Skip to main content

The Biology of Aging and the Development of Lower Urinary Tract Dysfunction and Disease

  • Chapter
  • First Online:
Geriatric Urology

Abstract

Basic and translational research has played a critical role in the understanding of human structure and function and essentially all human diseases. This is certainly true of the aging process. Basic research has advanced our knowledge about anatomic and physiologic alterations that occur naturally as part of aging of the genitourinary tract. In addition, this type of research has led to the development of treatments for a wide spectrum of clinical conditions which predominantly affect older adults. This chapter will focus on basic and translation research related to prostate disease and bladder dysfunction in the elderly population. This includes analysis of benign prostatic hyperplasia (BPH), prostatic fibrosis, and prostate cancer, and both storage and voiding dysfunction related to the bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meigs JB. Risk factors for clinical benign prostatic hyperplasia in a community-based population of healthy aging men. J Clin Epidemiol. 2001;54:935–44.

    CAS  PubMed  Google Scholar 

  2. Verhamme KM. Incidence and prevalence of LUTS suggestive of BPH in primary care - the triumph project. Eur Urol. 2002;42:323–8.

    CAS  PubMed  Google Scholar 

  3. Neuhouser ML, Kristal AR, Penson DF. Steroid hormones and hormone-related genetic and lifestyle characteristics as risk factors for benign prostatic hyperplasia: review of epidemiologic literature. Urology. 2004;64(2):201–11.

    PubMed  Google Scholar 

  4. Hannema SE, Hughes IA. Regulation of Wolffian duct development. Horm Res. 2007;67(3):142–51.

    CAS  PubMed  Google Scholar 

  5. Evans GS. Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate. 1987;11:339–51.

    CAS  PubMed  Google Scholar 

  6. Evans GS. Cell proliferation studies in rat prostate 1. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate. 1987;10:163–78.

    CAS  PubMed  Google Scholar 

  7. Colombel MC, Buttyan R. Hormonal control of apoptosis: the rat prostate gland as a model system. Methods Cell Biol. 1995;46:369–85.

    CAS  PubMed  Google Scholar 

  8. Ho CK. Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol. 2011;8:29–41.

    CAS  PubMed  Google Scholar 

  9. Jacobsen SJ. Natural history of benign prostatic hyperplasia. Urology. 2001;58(6 Suppl 1):5–16.

    CAS  PubMed  Google Scholar 

  10. Jakobsen H, Torp-Pedersen S, Juul N. Ultrasonic evaluation of age-related human prostatic growth and development of benign prostatic hyperplasia. Scand J Urol Nephrol Suppl. 1988;107:26–31.

    CAS  PubMed  Google Scholar 

  11. Arenas M, Romo E, Royuela M, et al. Morphometric evaluation of the human prostate. Int J Androl. 2001;24:37–47.

    CAS  PubMed  Google Scholar 

  12. Berges RR, Vukanovic J, Epstein JI, et al. Implication of cell kinetic changes during the progression of human prostatic cancer. Clin Cancer Res. 1995;1:473–80.

    CAS  PubMed  Google Scholar 

  13. Colombel M, Vacherot F, Gil Diez S, et al. Zonal variation of apoptosis and proliferation in the normal prostate and in benign prostatic hyperplasia. Br J Urol. 1998;82:380–5.

    CAS  PubMed  Google Scholar 

  14. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell. 1989;56:917–30.

    Google Scholar 

  15. Merz VW, Miller GJ, Krebs T, et al. Elevated transforming growth factor-beta 1 and beta 3 mRNA levels are associated with ras + myc-induced carcinomas in reconstituted mouse prostate: evidence for a paracrine role during progression. Mol Endocrinol. 1991;5:503–13.

    CAS  PubMed  Google Scholar 

  16. Foster BA, Kaplan PJ, Greenberg NM. Peptide growth factors and prostate cancer: new models, new opportunities. Cancer Metastasis Rev. 1999;17:317–24.

    CAS  Google Scholar 

  17. Cunha GR, Hayward SW, Dahiya R, Foster BA. Smooth muscle-epithelial interactions in normal and neoplastic prostatic development. Acta Anat. 1996;155:63–72.

    CAS  PubMed  Google Scholar 

  18. Hayward SW, Haughney PC, Rosen MA, et al. Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation. 1998;63:131–40.

    CAS  PubMed  Google Scholar 

  19. Song Z, Wu X, Powell WC, et al. Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Cancer Res. 2002;62:5096–105.

    CAS  PubMed  Google Scholar 

  20. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.

    CAS  PubMed  Google Scholar 

  21. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2001;86(2):724–31.

    CAS  PubMed  Google Scholar 

  22. Suzuki K, Ito K, Ichinose Y, Kurokawa K, Suzuki T, Imai K, et al. Endocrine environment of benign prostatic hyperplasia: prostate size and volume are correlated with serum estrogen concentration. Scand J Urol Nephrol. 1995;29(1):65–8.

    CAS  PubMed  Google Scholar 

  23. Sciarra F, Toscano V. Role of estrogens in human benign prostatic hyperplasia. Arch Androl. 2000;44(3):213–20.

    CAS  PubMed  Google Scholar 

  24. Ellem SJ, Risbridger GP. The dual, opposing roles of estrogen in the prostate. Ann N Y Acad Sci. 2009;1155:174–86.

    CAS  PubMed  Google Scholar 

  25. Prins GS, Korach KS. The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids. 2008;73(3):233–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol. 2009;55(3):533–42.

    CAS  PubMed  Google Scholar 

  27. Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation. 2011;82(4–5):184–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Cohen PG. Obesity in men: the hypogonadal-estrogen receptor relationship and its effect on glucose homeostasis. Med Hypotheses. 2008;70(2):358–60.

    CAS  PubMed  Google Scholar 

  29. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41.

    CAS  PubMed  Google Scholar 

  30. Story MT, Hopp KA, Meier DA, Begun FP, Lawson RK. Influence of transforming growth factor beta 1 and other growth factors on basic fibroblast growth factor level and proliferation of cultured human prostate-derived fibroblasts. Prostate. 1993;22(3):183–97.

    CAS  PubMed  Google Scholar 

  31. Wang Z, Olumi AF. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia. Differentiation. 2011;82(4–5):261–71.

    CAS  PubMed  Google Scholar 

  32. Macoska JA. Chemokines and BPH/LUTS. Differentiation. 2011;82(4–5):253–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. McLaren ID, Jerde TJ, Bushman W. Role of interleukins, IGF and stem cells in BPH. Differentiation. 2011;82(4–5):237–43.

    CAS  PubMed  Google Scholar 

  34. Mori H, Maki M, Oishi K, Jaye M, Igarashi K, Yoshida O, et al. Increased expression of genes for basic fibroblast growth factor and transforming growth factor type beta 2 in human benign prostatic hyperplasia. Prostate. 1990;16(1):71–80.

    CAS  PubMed  Google Scholar 

  35. Story MT, Hopp KA, Molter M, Meier DA. Characteristics of FGF-receptors expressed by stromal and epithelial cells cultured from normal and hyperplastic prostates. Growth Factors. 1994;10(4):269–80.

    CAS  PubMed  Google Scholar 

  36. Sinowatz F, Schams D, Einspanier R, Arnold G, Pfeffer M, Temmim-Baker L, et al. Cellular localization of fibroblast growth factor 2 (FGF-2) in benign prostatic hyperplasia. Histol Histopathol. 2000;15(2):475–81.

    CAS  PubMed  Google Scholar 

  37. Mydlo JH, Kral JG, Macchia RJ. Differences in prostate and adipose tissue basic fibroblast growth factor: analysis of preliminary results. Urology. 1997;50(3):472–8.

    CAS  PubMed  Google Scholar 

  38. Konno-Takahashi N, Takeuchi T, Nishimatsu H, Kamijo T, Tomita K, Schalken JA, et al. Engineered FGF-2 expression induces glandular epithelial hyperplasia in the murine prostatic dorsal lobe. Eur Urol. 2004;46(1):126–32.

    PubMed  Google Scholar 

  39. Fiorelli G, De Bellis A, Longo A, Giannini S, Natali A, Costantini A, et al. Insulin-like growth factor-I receptors in human hyperplastic prostate tissue: characterization, tissue localization, and their modulation by chronic treatment with a gonadotropin-releasing hormone analog. J Clin Endocrinol Metab. 1991;72(4):740–6.

    CAS  PubMed  Google Scholar 

  40. Dong G, Rajah R, Vu T, Hoffman AR, Rosenfeld RG, Roberts Jr CT, et al. Decreased expression of Wilms’ tumor gene WT-1 and elevated expression of insulin growth factor-II (IGF-II) and type 1 IGF receptor genes in prostatic stromal cells from patients with benign prostatic hyperplasia. J Clin Endocrinol Metab. 1997;82(7):2198–203.

    CAS  PubMed  Google Scholar 

  41. Jarrard DF, Bussemakers MJ, Bova GS, Isaacs WB. Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin Cancer Res. 1995;1(12):1471–8.

    CAS  PubMed  Google Scholar 

  42. Konno-Takahashi N, Takeuchi T, Shimizu T, Nishimatsu H, Fukuhara H, Kamijo T, et al. Engineered IGF-I expression induces glandular enlargement in the murine prostate. J Endocrinol. 2003;177(3):389–98.

    CAS  PubMed  Google Scholar 

  43. Zhou D, Li S, Wang X, Cheng B, Ding X. Estrogen receptor alpha is essential for the proliferation of prostatic smooth muscle cells stimulated by 17beta-estradiol and insulin-like growth factor 1. Cell Biochem Funct. 2011;29(2):120–5.

    CAS  PubMed  Google Scholar 

  44. Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3(105):cm1.

    PubMed  Google Scholar 

  45. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.

    CAS  PubMed  Google Scholar 

  46. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10(3):319–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Begley L, Monteleon C, Shah RB, Macdonald JW, Macoska JA. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell. 2005;4(6):291–8.

    CAS  PubMed  Google Scholar 

  48. Begley LA, Kasina S, MacDonald J, Macoska JA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine. 2008;43(2):194–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. McDowell KL, Begley LA, Mor-Vaknin N, Markovitz DM, Macoska JA. Leukocytic promotion of prostate cellular proliferation. Prostate. 2010;70(4):377–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Penna G, Fibbi B, Amuchastegui S, Cossetti C, Aquilano F, Laverny G, et al. Human benign prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated inflammation. J Immunol. 2009;182(7):4056–64.

    CAS  PubMed  Google Scholar 

  51. Fujita K, Ewing CM, Getzenberg RH, Parsons JK, Isaacs WB, Pavlovich CP. Monocyte chemotactic protein-1 (MCP-1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia. Prostate. 2010;70(5):473–81.

    CAS  PubMed  Google Scholar 

  52. Dimri GP. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Nishimura F, Terranova VP, Braithwaite M, Orman R, Ohyama H, Mineshiba J, et al. Comparison of in vitro proliferative capacity of human periodontal ligament cells in juvenile and aged donors. Oral Dis. 1997;3(3):162–6.

    CAS  PubMed  Google Scholar 

  54. Hjelmeland LM, Cristofolo VJ, Funk W, Rakoczy E, Katz ML. Senescence of the retinal pigment epithelium. Mol Vis. 1999;5:33.

    CAS  PubMed  Google Scholar 

  55. Kajstura J, Pertoldi B, Leri A, Beltrami CA, Deptala A, Darzynkiewicz Z, et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol. 2000;156(3):813–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Chkhotua A, Shohat M, Tobar A, Magal N, Kaganovski E, Shapira Z, et al. Replicative senescence in organ transplantation-mechanisms and significance. Transpl Immunol. 2002;9(2–4):165–71.

    CAS  PubMed  Google Scholar 

  57. Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Investig. 2004;114(9):1299–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22.

    CAS  PubMed  Google Scholar 

  59. Bavik C, Coleman I, Dean JP, et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 2006;66(2):794–802.

    CAS  PubMed  Google Scholar 

  60. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    CAS  PubMed  Google Scholar 

  61. Bierhoff E, Vogel J, Benz M, Giefer T, Wernert N, Pfeifer U. Stromal nodules in benign prostatic hyperplasia. Eur Urol. 1996;29(3):345–54.

    CAS  PubMed  Google Scholar 

  62. Begley LA, MacDonald JW, Day ML, Macoska JA. CXCL12 activates a robust transcriptional response in human prostate epithelial cells. J Biol Chem. 2007;282(37):26767–74.

    CAS  PubMed  Google Scholar 

  63. Schauer IG, Ressler SJ, Rowley DR. Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate. 2009;69(4):373–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci. 2011;68(17):2811–30.

    CAS  PubMed  Google Scholar 

  65. Deering RE, Bigler SA, Brown M, Brawer MK. Microvascularity in benign prostatic hyperplasia. Prostate. 1995;26(3):111–5.

    CAS  PubMed  Google Scholar 

  66. Shih SJ, Dall’Era MA, Westphal JR, Yang J, Sweep CG, Gandour-Edwards R, et al. Elements regulating angiogenesis and correlative microvessel density in benign hyperplastic and malignant prostate tissue. Prostate Cancer Prostatic Dis. 2003;6(2):131–7.

    CAS  PubMed  Google Scholar 

  67. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, et al. TGF-β and fibrosis in different organs — molecular pathway imprints. Biochim Biophys Acta. 2009;1792(8):746–56.

    CAS  PubMed  Google Scholar 

  68. Hinz B. Formation and function of the myofibroblast during tissue repair. J Investig Dermatol. 2007;127(3):526–37.

    CAS  PubMed  Google Scholar 

  69. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat M-L, Gabbiani G. The myofibroblast. Am J Pathol. 2007;170(6):1807–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Detlefsen S, Sipos B, Feyerabend B, Klöppel G. Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch. 2005;447(5):800–5.

    PubMed  Google Scholar 

  72. Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care. 2008;31 Suppl 2:S161–4.

    CAS  PubMed  Google Scholar 

  73. Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest. 2007;132(4):1311–21.

    PubMed  Google Scholar 

  74. Gharaee-Kermani M. Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGFbeta signaling and the myofibroblast. Curr Med Chem. 2009;16(11):1400–17.

    CAS  PubMed  Google Scholar 

  75. Frith J, Day CP, Henderson E, Burt AD, Newton JL. Non-alcoholic fatty liver disease in older people. Gerontology. 2009;55(6):607–13.

    CAS  PubMed  Google Scholar 

  76. Novo E, Valfrè di Bonzo L, Cannito S, Colombatto S, Parola M. Hepatic myofibroblasts: a heterogeneous population of multifunctional cells in liver fibrogenesis. Int J Biochem Cell Biol. 2009;41(11):2089–93.

    CAS  PubMed  Google Scholar 

  77. Rieder F, Fiocchi C. Intestinal fibrosis in IBD—a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol. 2009;6(4):228–35.

    CAS  PubMed  Google Scholar 

  78. Goldacre MJ. Demography of aging and the epidemiology of gastrointestinal disorders in the elderly. Best Pract Res Clin Gastroenterol. 2009;23(6):793–804.

    PubMed  Google Scholar 

  79. Barron DA, Strand DW, Ressler SJ, Dang TD, Hayward SW, Yang F, et al. TGF-beta1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse. PLoS ONE. 2010;5(10):e13751.

    PubMed Central  PubMed  Google Scholar 

  80. Ma J, Gharaee-Kermani M, Kunju L, Hollingsworth J, Adler J, Arruda E, et al. Prostatic fibrosis is associated with lower urinary tract symptoms. J Urol. 2012;188(4):1375–81.

    PubMed Central  PubMed  Google Scholar 

  81. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    PubMed  Google Scholar 

  82. Kaufman JM. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26(6):833–76.

    CAS  PubMed  Google Scholar 

  83. Banerjee PP, Banerjee S, Brown TR. Increased androgen receptor expression correlates with development of age-dependent, lobe-specific spontaneous hyperplasia of the brown Norway rat prostate. Endocrinology. 2001;142(9):4066–75.

    CAS  PubMed  Google Scholar 

  84. Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res. 2006;12(6):1665–71.

    CAS  PubMed  Google Scholar 

  85. Culig Z. Androgen receptor activation in prostatic tumor cell lines by Insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994;54(20):5474–8.

    CAS  PubMed  Google Scholar 

  86. Craft N, Chhor C, Tran C, Belldegrun A, DeKernion J, Witte ON, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 1999;59(19):5030–6.

    CAS  PubMed  Google Scholar 

  87. Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A. 1999;96(10):5458–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Torring N, Vinter-Jensen L, Sorensen FB, Flyvbjerg A, Nexo E. Systemic treatment with epidermal growth factor but not insulin-like growth factor I decreases the involution of the prostate in castrated rats. Urol Res. 2000;28(2):75–81.

    CAS  PubMed  Google Scholar 

  89. Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH, et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 2000;60(24):6841–5.

    CAS  PubMed  Google Scholar 

  90. Shi Y, Brands FH, Chatterjee S, Feng AC, Groshen S, Schewe J, et al. Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J Urol. 2001;166(4):1514–9.

    CAS  PubMed  Google Scholar 

  91. Lee LF, Guan J, Qiu Y, Kung HJ. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol. 2001;21(24):8385–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Dai J, Shen R, Sumitomo M, Stahl R, Navarro D, Gershengorn MC, et al. Synergistic activation of the androgen receptor by bombesin and low-dose androgen. Clin Cancer Res. 2002;8(7):2399–405.

    CAS  PubMed  Google Scholar 

  93. Debes JD, Comuzzi B, Schmidt LJ, Dehm SM, Culig Z, Tindall DJ. p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Res. 2005;65(13):5965–73.

    CAS  PubMed  Google Scholar 

  94. Debes JD, Tindall DJ. The role of androgens and the androgen receptor in prostate cancer. Cancer Lett. 2002;187(1–2):1–7.

    CAS  PubMed  Google Scholar 

  95. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58(20):4640–5.

    CAS  PubMed  Google Scholar 

  96. Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem. 2002;277(9):7076–85.

    CAS  PubMed  Google Scholar 

  97. Ueda T, Mawji NR, Bruchovsky N, Sadar MD. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem. 2002;277(41):38087–94.

    CAS  PubMed  Google Scholar 

  98. Culig Z. Interleukin-6 polymorphism: expression and pleiotropic regulation in human prostate cancer. J Urol. 2005;174(2):417.

    PubMed  Google Scholar 

  99. Culig Z, Bartsch G, Hobisch A. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth. Mol Cell Endocrinol. 2002;197(1–2):231–8.

    CAS  PubMed  Google Scholar 

  100. Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem. 2005;95(3):497–505.

    CAS  PubMed  Google Scholar 

  101. Lee SO, Chun JY, Nadiminty N, Lou W, Feng S, Gao AC. Interleukin-4 activates androgen receptor through CBP/p300. Prostate. 2009;69(2):126–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate. 2007;67(7):764–73.

    CAS  PubMed  Google Scholar 

  103. Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC. Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res. 2003;9(1):370–6.

    CAS  PubMed  Google Scholar 

  104. Lee SO, Lou W, Hou M, Onate SA, Gao AC. Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene. 2003;22(39):7981–8.

    PubMed  Google Scholar 

  105. Lee SO, Lou W, Johnson CS, Trump DL, Gao AC. Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate. 2004;60(3):178–86.

    CAS  PubMed  Google Scholar 

  106. Lee SO, Pinder E, Chun JY, Lou W, Sun M, Gao AC. Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate. 2008;68(1):85–91.

    CAS  PubMed  Google Scholar 

  107. Malinowska K, Neuwirt H, Cavarretta IT, Bektic J, Steiner H, Dietrich H, et al. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer. 2009;16(1):155–69.

    CAS  PubMed  Google Scholar 

  108. Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP, et al. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene. 2004;23(12):2197–205.

    CAS  PubMed  Google Scholar 

  109. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 2007;67(14):6854–62.

    CAS  PubMed  Google Scholar 

  110. MacManus CF, Pettigrew J, Seaton A, Wilson C, Maxwell PJ, Berlingeri S, et al. Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res. 2007;5(7):737–48.

    CAS  PubMed  Google Scholar 

  111. Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, et al. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis. 2008;29(6):1148–56.

    CAS  PubMed  Google Scholar 

  112. Kasina S, Macoska JA. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Mol Cell Endocrinol. 2012;351(2):249–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Begley LA, Kasina S, Mehra R, Adsule S, Admon AJ, Lonigro RJ, et al. CXCL5 promotes prostate cancer progression. Neoplasia. 2008;10(3):244–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Singh S, Singh UP, Grizzle WE, Lillard Jr JW. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest. 2004;84(12):1666–76.

    CAS  PubMed  Google Scholar 

  115. Sun Y-X, Schneider A, Jung Y, Wang J, Dai J, Wang J, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2004;20(2):318–29.

    PubMed  Google Scholar 

  116. Lehrer S, Diamond EJ, Mamkine B, Stone NN, Stock RG. Serum interleukin-8 is elevated in men with prostate cancer and bone metastases. Technol Cancer Res Treat. 2004;3(5):411.

    CAS  PubMed  Google Scholar 

  117. Matsuda T, Junicho A, Yamamoto T, Kishi H, Korkmaz K, Saatcioglu F, et al. Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun. 2001;283(1):179–87.

    CAS  PubMed  Google Scholar 

  118. Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun. 2003;305(3):462–9.

    CAS  PubMed  Google Scholar 

  119. Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD, et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res. 2000;6(5):2104–19.

    CAS  PubMed  Google Scholar 

  120. Lin DL, Whitney MC, Yao Z, Keller ET. Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res. 2001;7(6):1773–81.

    CAS  PubMed  Google Scholar 

  121. Ghatak S, Ho SM. Age-related changes in the activities of antioxidant enzymes and lipid peroxidation status in ventral and dorsolateral prostate lobes of noble rats. Biochem Biophys Res Commun. 1996;222(2):362–7.

    CAS  PubMed  Google Scholar 

  122. Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM, et al. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer. 2000;89(1):123–34.

    CAS  PubMed  Google Scholar 

  123. Oberley TD, Zhong W, Szweda LI, Oberley LW. Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate. 2000;44(2):144–55.

    CAS  PubMed  Google Scholar 

  124. Malins DC, Johnson PM, Wheeler TM, Barker EA, Polissar NL, Vinson MA. Age-related radical-induced DNA damage is linked to prostate cancer. Cancer Res. 2001;61(16):6025–8.

    CAS  PubMed  Google Scholar 

  125. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27(9–10):916–21.

    CAS  PubMed  Google Scholar 

  126. Richie Jr JP. The role of glutathione in aging and cancer. Exp Gerontol. 1992;27(5–6):615–26.

    CAS  PubMed  Google Scholar 

  127. Masse J. Selenium status in aging. Am J Clin Nutr. 1995;61(5):1172–3.

    CAS  PubMed  Google Scholar 

  128. Ray AL, Semba RD, Walston J, Ferrucci L, Cappola AR, Ricks MO, et al. Low serum selenium and total carotenoids predict mortality among older women living in the community: the Women’s Health and Aging Studies. J Nutr. 2006;136(1):172–6.

    CAS  PubMed  Google Scholar 

  129. Simonoff M, Sergeant C, Garnier N, Moretto P, Llabador Y, Simonoff G, et al. Antioxidant status (selenium, vitamins A and E) and aging. EXS. 1992;62:368–97.

    CAS  PubMed  Google Scholar 

  130. El-Bayoumy K. The protective role of selenium on genetic damage and on cancer. Mutat Res. 2001;475(1–2):123–39.

    CAS  PubMed  Google Scholar 

  131. El-Bayoumy K, Sinha R. Molecular chemoprevention by selenium: a genomic approach. Mutat Res. 2005;591(1–2):224–36.

    CAS  PubMed  Google Scholar 

  132. Clark LC, Combs Jr GF, Turnbull BW, Slate EH, Chalker DK, Chow J, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of cancer study group. JAMA. 1996;276(24):1957–63.

    CAS  PubMed  Google Scholar 

  133. Facompre N, El-Bayoumy K. Potential stages for prostate cancer prevention with selenium: implications for cancer survivors. Cancer Res. 2009;69(7):2699–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Donkena KV, Young CY, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int. 2010;2010:302051.

    PubMed Central  PubMed  Google Scholar 

  135. Vaughan CP, Johnson 2nd TM, Goode PS, Redden DT, Burgio KL, Markland AD. Vitamin D and lower urinary tract symptoms among US men: results from the 2005–2006 National Health and Nutrition Examination Survey. Urology. 2011;78(6):1292–7.

    PubMed  Google Scholar 

  136. Lou YR, Qiao S, Talonpoika R, Syvala H, Tuohimaa P. The role of Vitamin D3 metabolism in prostate cancer. J Steroid Biochem Mol Biol. 2004;92(4):317–25.

    CAS  PubMed  Google Scholar 

  137. Corder EH, Guess HA, Hulka BS, Friedman GD, Sadler M, Vollmer RT, et al. Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prev. 1993;2(5):467–72.

    CAS  PubMed  Google Scholar 

  138. Schwartz GG. Vitamin D, and intervention trials in prostate cancer: from theory to therapy. Ann Epidemiol. 2009;19(2):96–102.

    PubMed  Google Scholar 

  139. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, van Kerrebroeck P, Victor A, Wein A, Standardisation sub-committee of the International Continence Society. The standardisation of terminology of lower urinary tract function: report from the Standardisation sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21(2):167–78.

    PubMed  Google Scholar 

  140. Coyne KS, Sexton CC, Thompson CL, Milsom I, Irwin D, Kopp ZS, Chapple CR, Kaplan S, Tubaro A, Aiyer LP, Wein AJ. The prevalence of lower urinary tract symptoms (LUTS) in the USA, the UK and Sweden: results from the epidemiology of LUTS (EpiLUTS) study. BJU Int. 2009;104(3):352–60.

    PubMed  Google Scholar 

  141. Stewart WF, Van Rooyen JB, Cundiff GW, Abrams P, Herzog AR, Corey R, Hunt TL, Wein AJ. Prevalence and burden of overactive bladder in the United States. World J Urol. 2003;20(6):327–36.

    CAS  PubMed  Google Scholar 

  142. Coyne KS, Sexton CC, Vats V, Thompson C, Kopp ZS, Milsom I. National community prevalence of overactive bladder in the United States stratified by sex and age. Urology. 2011;77(5):1081–7.

    PubMed  Google Scholar 

  143. Wehrberger C, Madersbacher S, Jungwirth S, Fischer P, Tragl KH. Lower urinary tract symptoms and urinary incontinence in a geriatric cohort - a population-based analysis. BJU Int. 2012;110(10):1516–21.

    PubMed  Google Scholar 

  144. United Nations Department of Economic and Social Affairs Population Division. UN, 2002 World population ageing: 1950–2050. Available at: http://www.un.org/esa/population/publications/worldageing19502050/. Accessed May 2012.

  145. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Griffiths DJ, Tadic SD, Schaefer W, Resnick NM. Cerebral control of the lower urinary tract: how age-related changes might predispose to urge incontinence. Neuroimage. 2009;47(3):981–6.

    PubMed Central  PubMed  Google Scholar 

  147. Poggesi A, Pracucci G, Chabriat H, Erkinjuntti T, Fazekas F, Verdelho A, Hennerici M, Langhorne P, O’Brien J, Scheltens P, Visser MC, Crisby M, Waldemar G, Wallin A, Inzitari D, Pantoni L, Leukoaraiosis And DISability Study Group. Urinary complaints in nondisabled elderly people with age-related white matter changes: the Leukoaraiosis And DISability (LADIS) Study. J Am Geriatr Soc. 2008;56(9):1638–43.

    PubMed  Google Scholar 

  148. Kuchel GA, Moscufo N, Guttmann CR, Zeevi N, Wakefield D, Schmidt J, Dubeau CE, Wolfson L. Localization of brain white matter hyperintensities and urinary incontinence in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2009;64(8):902–9.

    PubMed  Google Scholar 

  149. Tadic SD, Griffiths D, Murrin A, Schaefer W, Aizenstein HJ, Resnick NM. Brain activity during bladder filling is related to white matter structural changes in older women with urinary incontinence. Neuroimage. 2010;51(4):1294–302.

    PubMed Central  PubMed  Google Scholar 

  150. Gilpin SA, Gilpin CJ, Dixon JS, Gosling JA, Kirby RS. The effect of age on the autonomic innervation of the urinary bladder. Br J Urol. 1986;58(4):378–81.

    CAS  PubMed  Google Scholar 

  151. Hald T, Horn T. The human urinary bladder in aging. Br J Urol. 1998;82 Suppl 1:59–64.

    PubMed  Google Scholar 

  152. Ranson RN, Dodds AL, Smith MJ, Santer RM, Watson AH. Age-associated changes in the monoaminergic innervation of rat lumbosacral spinal cord. Brain Res. 2003;972(1–2):149–58.

    CAS  PubMed  Google Scholar 

  153. Mohammed HA, Santer RM. Total neuronal numbers of rat lumbosacral primary afferent neurons do not change with age. Neurosci Lett. 2001;304(3):149–52.

    CAS  PubMed  Google Scholar 

  154. Mohammed H, Santer RM. Distribution and changes with age of nitric oxide synthase-immunoreactive nerves of the rat urinary bladder, ureter and in lumbosacral sensory neurons. Eur J Morphol. 2001;39(3):137–44.

    CAS  PubMed  Google Scholar 

  155. Saleh HA. Vanilloid receptor type 1-immunoreactive nerves in the rat urinary bladder and primary afferent neurones: the effects of age. Folia Morphol (Warsz). 2006;65(3):213–20.

    CAS  Google Scholar 

  156. Hotta H, Morrison JF, Sato A, Uchida S. The effects of aging on the rat bladder and its innervation. Jpn J Physiol. 1995;45(5):823–36.

    CAS  PubMed  Google Scholar 

  157. Nakayama H, Noda K, Hotta H, Ohsawa H, Hosoya Y. Effects of aging on numbers, sizes and conduction velocities of myelinated and unmyelinated fibers of the pelvic nerve in rats. J Auton Nerv Syst. 1998;69(2–3):148–55.

    CAS  PubMed  Google Scholar 

  158. Smith PP, DeAngelis A, Kuchel GA. Detrusor expulsive strength is preserved, but responsiveness to bladder filling and urinary sensitivity is diminished in the aging mouse. Am J Physiol Regul Integr Comp Physiol. 2012;302(5):R577–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Kenton K, Lowenstein L, Simmons J, Brubaker L. Aging and overactive bladder may be associated with loss of urethral sensation in women. Neurourol Urodyn. 2007;26(7):981–4.

    PubMed  Google Scholar 

  160. Lepor H, Sunaryadi I, Hartanto V, Shapiro E. Quantitative morphometry of the adult human bladder. J Urol. 1992;148(2 Pt 1):414–7.

    CAS  PubMed  Google Scholar 

  161. Lluel P, Palea S, Barras M, Grandadam F, Heudes D, Bruneval P, Corman B, Martin DJ. Functional and morphological modifications of the urinary bladder in aging female rats. Am J Physiol Regul Integr Comp Physiol. 2000;278(4):R964–72.

    CAS  PubMed  Google Scholar 

  162. Zhao W, Aboushwareb T, Turner C, Mathis C, Bennett C, Sonntag WE, Andersson KE, Christ G. Impaired bladder function in aging male rats. J Urol. 2010;184(1):378–85.

    PubMed Central  PubMed  Google Scholar 

  163. Elbadawi A, Yalla SV, Resnick NM. Structural basis of geriatric voiding dysfunction. II. Aging detrusor: normal versus impaired contractility. J Urol. 1993;150(5 Pt 2):1657–67.

    CAS  PubMed  Google Scholar 

  164. Lowalekar SK, Cristofaro V, Radisavljevic ZM, Yalla SV, Sullivan MP. Loss of bladder smooth muscle caveolae in the aging bladder. Neurourol Urodyn. 2012;31(4):586–92.

    PubMed  Google Scholar 

  165. Levy BJ, Wight TN. Structural changes in the aging submucosa: new morphologic criteria for the evaluation of the unstable human bladder. J Urol. 1990;144(4):1044–55.

    CAS  PubMed  Google Scholar 

  166. Ewalt DH, Howard PS, Blyth B, Snyder 3rd HM, Duckett JW, Levin RM, Macarak EJ. Is lamina propria matrix responsible for normal bladder compliance? J Urol. 1992;148(2 Pt 2):544–9.

    CAS  PubMed  Google Scholar 

  167. Strasser H, Tiefenthaler M, Steinlechner M, Eder I, Bartsch G, Konwalinka G. Age dependent apoptosis and loss of rhabdosphincter cells. J Urol. 2000;164(5):1781–5.

    CAS  PubMed  Google Scholar 

  168. Pfisterer MH, Griffiths DJ, Schaefer W, Resnick NM. The effect of age on lower urinary tract function: a study in women. J Am Geriatr Soc. 2006;54(3):405–12.

    PubMed  Google Scholar 

  169. Nordling J. The aging bladder–a significant but underestimated role in the development of lower urinary tract symptoms. Exp Gerontol. 2002;37(8–9):991–9.

    PubMed  Google Scholar 

  170. Kolta MG, Wallace LJ, Gerald MC. Age-related changes in sensitivity of rat urinary bladder to autonomic agents. Mech Ageing Dev. 1984;27:183–8.

    CAS  PubMed  Google Scholar 

  171. Ordway GA, Esbenshade TA, Kolta MG, Gerald MC, Wallace LJ. Effect of age on cholinergic muscarinic responsiveness and receptors in the rat urinary bladder. J Urol. 1986;136:492–6.

    CAS  PubMed  Google Scholar 

  172. Chun AL, Wallace LJ, Gerald MC, Wein AJ, Levin RM. Effects of age on urinary bladder function in the male rat. J Urol. 1989;141:170–3.

    CAS  PubMed  Google Scholar 

  173. Pagala MK, Tetsoti L, Nagpal D, Wise GJ. Aging effects on contractility of longitudinal and circular detrusor and trigone of rat bladder. J Urol. 2001;166:721–7.

    CAS  PubMed  Google Scholar 

  174. Schneider T, Hein P, Michel-Reher MB, Michel MC. Effects of ageing on muscarinic receptor subtypes and function in rat urinary bladder. Naunyn Schmiedebergs Arch Pharmacol. 2005;372:71–8.

    CAS  PubMed  Google Scholar 

  175. Yu HI, Wein AJ, Levin RM. Contractile responses and calcium mobilization induced by muscarinic agonists in the rat urinary bladder: effects of age. Gen Pharmacol. 1997;28:623–8.

    CAS  PubMed  Google Scholar 

  176. Hegde SS, Mandel DA, Wilford MR, Briaud S, Ford AP, Eglen RM. Evidence for purinergic neurotransmission in the urinary bladder of pithed rats. Eur J Pharmacol. 1998;349:75–82.

    CAS  PubMed  Google Scholar 

  177. Lluel P, Deplanne V, Heudes D, Bruneval P, Palea S. Age-related changes in urethrovesical coordination in male rats: relationship with bladder instability? Am J Physiol Regul Integr Comp Physiol. 2003;284:R1287–95.

    CAS  PubMed  Google Scholar 

  178. Watanabe T, Matsumoto M, Toji S, Miyagawa I. Effects of estrogen on age-related changes in muscarinic responsiveness of the urinary bladder and lumbosacral dorsal root ganglion cells in female rats. Mol Cell Biochem. 2008;318(1–2):53–61.

    CAS  PubMed  Google Scholar 

  179. Michel MC, Schneider T, Krege S, Goepel M. Does gender or age affect the efficacy and safety of tolterodine? J Urol. 2002;168(3):1027–31.

    CAS  PubMed  Google Scholar 

  180. Andersson KE, Chapple CR, Cardozo L, Cruz F, Hashim H, Michel MC, Tannenbaum C, Wein AJ. Pharmacological treatment of overactive bladder: report from the International Consultation on Incontinence. Curr Opin Urol. 2009;19(4):380–94.

    PubMed  Google Scholar 

  181. Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol. 2005;144(8):1089–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Wuest M, Morgenstern K, Graf EM, Braeter M, Hakenberg OW, Wirth MP, Ravens U. Cholinergic and purinergic responses in isolated human detrusor in relation to age. J Urol. 2005;173(6):2182–9.

    CAS  PubMed  Google Scholar 

  183. Chua WC, Liu L, Mansfield KJ, Vaux KJ, Moore KH, Millard RJ, Burcher E. Age-related changes of P2X[1] receptor mRNA in the bladder detrusor from men with and without bladder outlet obstruction. Exp Gerontol. 2007;42(7):686–92.

    CAS  PubMed  Google Scholar 

  184. Yoshida M, Homma Y, Inadome A, Yono M, Seshita H, Miyamoto Y, Murakami S, Kawabe K, Ueda S. Age-related changes in cholinergic and purinergic neurotransmission in human isolated bladder smooth muscles. Exp Gerontol. 2001;36(1):99–109.

    CAS  PubMed  Google Scholar 

  185. Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A. Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology. 2004;63(3 Suppl 1):17–23.

    PubMed  Google Scholar 

  186. Gómez-Pinilla PJ, Pozo MJ, Camello PJ. Aging impairs neurogenic contraction in guinea pig urinary bladder: role of oxidative stress and melatonin. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R793–803.

    PubMed  Google Scholar 

  187. Fry CH, Bayliss M, Young JS, Hussain M. Influence of age and bladder dysfunction on the contractile properties of isolated human detrusor smooth muscle. BJU Int. 2011;108(2 Pt 2):E91–6.

    PubMed  Google Scholar 

  188. Andersson KE. Storage and voiding symptoms: pathophysiologic aspects. Urology. 2003;62(5 Suppl 2):3–10.

    PubMed  Google Scholar 

  189. Jørgensen JB, Jensen KM, Mogensen P. Age-related variation in urinary flow variables and flow curve patterns in elderly males. Br J Urol. 1992;69(3):265–71.

    PubMed  Google Scholar 

  190. Jørgensen JB, Jensen KM, Mogensen P. Longitudinal observations on normal and abnormal voiding in men over the age of 50 years. Br J Urol. 1993;72(4):413–20.

    PubMed  Google Scholar 

  191. Madersbacher S, Pycha A, Schatzl G, Mian C, Klingler CH, Marberger M. The aging lower urinary tract: a comparative urodynamic study of men and women. Urology. 1998;51(2):206–12.

    CAS  PubMed  Google Scholar 

  192. Ameda K, Sullivan MP, Bae RJ, Yalla SV. Urodynamic characterization of nonobstructive voiding dysfunction in symptomatic elderly men. J Urol. 1999;162(1):142–6.

    CAS  PubMed  Google Scholar 

  193. Andersson KE. Detrusor underactivity/underactive bladder: new research initiatives needed. J Urol. 2010;184(5):1829–30.

    PubMed  Google Scholar 

  194. van Koeveringe GA, Vahabi B, Andersson KE, Kirschner-Herrmans R, Oelke M. Detrusor underactivity: a plea for new approaches to a common bladder dysfunction. Neurourol Urodyn. 2011;30(5):723–8.

    PubMed  Google Scholar 

  195. Smith PP. Aging and the underactive detrusor: a failure of activity or activation? Neurourol Urodyn. 2010;29(3):408–12.

    PubMed  Google Scholar 

  196. Malone-Lee J, Wahedna I. Characterisation of detrusor contractile function in relation to old age. Br J Urol. 1993;72(6):873–80.

    CAS  PubMed  Google Scholar 

  197. Collas DM, Malone-Lee JG. Age-associated changes in detrusor sensory function in women with lower urinary tract symptoms. Int Urogynecol J Pelvic Floor Dysfunct. 1996;7(1):24–9.

    CAS  PubMed  Google Scholar 

  198. Van Mastrigt R. Age dependency of urinary bladder contractility. Neurourol Urodyn. 1992;11:315–7.

    Google Scholar 

  199. Resnick NM, Yalla SV. Detrusor hyperactivity with impaired contractile function. An unrecognized but common cause of incontinence in elderly patients. JAMA. 1987;257(22):3076–81.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill A. Macoska Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Macoska, J.A., Kasina, S., Campeau, L., Andersson, KE. (2014). The Biology of Aging and the Development of Lower Urinary Tract Dysfunction and Disease. In: Griebling, T. (eds) Geriatric Urology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9047-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9047-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9046-3

  • Online ISBN: 978-1-4614-9047-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics