Skip to main content

In Vitro Cytotoxicity Assays of Nanoparticles on Different Cell Lines

  • Chapter
  • First Online:
Nanotoxicology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

One of the greatest interests in the pharmaceutical and cosmetic industries today is the promising of new substances without adverse effects. Preclinical animal safety investigations and clinical trials increase the time necessary to bring a new candidate compound to the market and increase development costs and time dispensed in this process. Cell culture models are adequate for screening toxicity of several substances including nanomaterials. The data from those models can provide an indication of the safety use of these particles in humans since they are proven hazardous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta SA, Tajiri N, Shinozuka K et al (2013) Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 8:e53376

    Article  PubMed  CAS  Google Scholar 

  • Ayaki M, Wasawa A, Niwano Y (2012) Cell viability score as an integrated indicator for cytotoxicity of benzalkonium chloride-containing antiglaucoma eyedrops. Biocontrol Sci 17:121–128

    Article  PubMed  CAS  Google Scholar 

  • Balls M (2012) The conflict over animal experimentation: is the field of battle changing? Altern Lab Anim 40:189–191

    PubMed  CAS  Google Scholar 

  • Breheny D, Oke O, Faux SP (2011) The use of in vitro systems to assess cancer mechanisms and the carcinogenic potential of chemicals. Altern Lab Anim 39:233–255

    PubMed  CAS  Google Scholar 

  • Brunt KR, Weisel RD, Li RK (2012) Stem cells and regenerative medicine: future perspectives. Can J Physiol Pharmacol 90:327–335

    Article  PubMed  CAS  Google Scholar 

  • Capes-Davis A, Theodosopoulos G, Atkin I et al (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chandler KJ, Barrier M, Jeffay S et al (2011) Evaluation of 309 environmental chemicals using a mouse stem cell adherent cell differentiation and cytotoxicity assay. PLoS One 6:1–11

    Article  Google Scholar 

  • Clover AJ, O’Neil BL, Kumar AH (2012) Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states. Wound Repair Regen 20:311–316

    Article  PubMed  Google Scholar 

  • Combes RD, Balls M (2011) Integrated testing strategies for toxicity employing new and existing technologies. Altern Lab Anim 39:213–225

    PubMed  CAS  Google Scholar 

  • Costin GE, Raabe HA, Priston R et al (2011) Vaginal irritation models: the current status of available alternative and in vitro tests. Altern Lab Anim 39:317–337

    PubMed  CAS  Google Scholar 

  • De Duve C, De Barsy T, Poole B et al (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    Article  PubMed  Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  PubMed  Google Scholar 

  • Fang JY, Al-Suwayeh SA (2012) Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin Drug Deliv 9:657–669

    Article  PubMed  CAS  Google Scholar 

  • Freshney RI (ed) (1994) Culture of animal cells: a manual of basic technique. Wiley, Hoboken, NJ

    Google Scholar 

  • Freshney RI (2005) Culture of animal cells: a manual of basic technique. Wiley, Hoboken, NJ, p 649

    Book  Google Scholar 

  • Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  PubMed  Google Scholar 

  • Fukazawa H, Suzuki T, Wakita T et al (2012) A cell-based, microplate colorimetric screen identifies7,8-benzoflavone and green tea gallate catechins as inhibitors of the hepatitis C virus. Biol Pharm Bull 35:1320–1327

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations on the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Lai JCK, Leung SW (2012) Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol 3:1–12

    Article  Google Scholar 

  • Han X, Corson N, Wade-Mercer P et al (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9

    Article  PubMed  CAS  Google Scholar 

  • Harris C (2012) Overview of in vitro models in developmental toxicology. Methods Mol Biol 889:105–113

    Article  PubMed  CAS  Google Scholar 

  • Jang J, Yoo JE, Lee JA, Lee DR et al (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44:202–213

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Lyles DN, Peifley K, Lockett S et al (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258

    Article  PubMed  CAS  Google Scholar 

  • Jonhston HJ, Hutchison GR, Christensen FM et al (2009) Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33–60

    Article  Google Scholar 

  • Kim YH, Fazlollahi F, Kennedy IM et al (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182:1398–13409

    Article  PubMed  CAS  Google Scholar 

  • Kroll A, Dierker C, Rommel C et al (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:1–19

    Article  Google Scholar 

  • L’Azou B, Jorly J, On D et al (2008) In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5:22–36

    Article  PubMed  Google Scholar 

  • Lanone S, Rogerieux F, Geys J et al (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6(14):26

    Google Scholar 

  • LeCluyse EL, Witek RP, Andersen ME et al (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42:501–548

    Article  PubMed  CAS  Google Scholar 

  • Liang XJ, Chen C, Zhao Y et al (2008) Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 9:697–709

    Article  PubMed  CAS  Google Scholar 

  • Machana S, Weerapreeyakul N, Barusrux S (2011) Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chin Med 6:39

    Article  PubMed  CAS  Google Scholar 

  • Mahato R, Tai W, Cheng K (2011) Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 63:659–670

    Article  PubMed  CAS  Google Scholar 

  • Martin MT, Judson RS, Reif DM et al (2009) Profiling chemicals based on chronic toxicity results from the U.S. EPA ToxRefDatabase. Environ Health Perspect 117:392–399

    PubMed  CAS  Google Scholar 

  • McKim JM Jr (2010) Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb Chem High Throughput Screen 13:188–206

    Article  PubMed  CAS  Google Scholar 

  • Melo PS, Durán N, Haun M (2002) Derivatives of dehydrocrotonin, a diterpene lactone isolated from Croton cajucara: cytotoxicity in rat cultured hepatocytes and V79 cells. Hum Exp Toxicol 21:273–280

    Article  Google Scholar 

  • Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  PubMed  CAS  Google Scholar 

  • Moller P, Jacobsen NR, Folkmann JK et al (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46

    Article  PubMed  CAS  Google Scholar 

  • Olabisi RM, Lazard ZW, Franco CL et al (2010) Hydrogel microsphere encapsulation of a cell-based gene therapy system increases cell survival of injected cells, transgene expression, and bone volume in a model of heterotropic ossification. Tissue Eng 16:3727–3736

    Article  CAS  Google Scholar 

  • Park EJ, Yi L, Chung KH et al (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    Article  PubMed  CAS  Google Scholar 

  • Pernot M, Vanderesse R, Frochot C et al (2011) Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol 7:793–802

    Article  PubMed  CAS  Google Scholar 

  • Pintus F, Floris G, Rufini A (2012) Nutrient availability links mitochondria, apoptosis, and obesity. Aging 4:734–741

    PubMed  CAS  Google Scholar 

  • Polchow B, Kebbel K, Schmiedeknecht G et al (2012) Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for culture cell banks. J Transl Med 10:98

    Article  PubMed  CAS  Google Scholar 

  • Pujalté I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10–26

    Article  PubMed  Google Scholar 

  • Roguet R, Cotovio J, Gaetani Q et al (1993) Cytotoxicity of 28 MEIC chemicals to rat hepatocytes using two viability endpoints: correlation with acute toxicity data in rat and man. Altern Lab Anim 21:216–224

    Google Scholar 

  • Russell K (1969) Tissue culture: a brief historical review. Clio Med 4:109–119

    Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  PubMed  CAS  Google Scholar 

  • Sayes C, Reed K, Subramoney S et al (2009) Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials? J Nanopart Res 11:421–431

    Article  CAS  Google Scholar 

  • Schneider P, Korolenko TA, Busch U (1997) A review of drug-induced lysosomal disorders of the liver in man and laboratory animals. Microsc Res Tech 36:253–275

    Article  PubMed  CAS  Google Scholar 

  • Shahbazi MA, Santos HA (2013) Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 14(1):28–56

    Article  PubMed  CAS  Google Scholar 

  • Sittampalam GS, Gal-Edd N, Arkin M et al (eds) (2007) Assay guidance manual. Eli Lilly & Company, Bethesda, MD

    Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D et al (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22–39

    Article  PubMed  Google Scholar 

  • Spielmann H, Genschow E, Leibsch M et al (1999) Determination of the starting dose for acute oral toxicity (LD50) testing in the up and down procedure (UDP) from cytotoxicity data. ATLA 27:957–966

    Google Scholar 

  • Stern ST, Johnson DN (2008) Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy 4:1097–1100

    PubMed  CAS  Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20–35

    Article  PubMed  CAS  Google Scholar 

  • Tedesco S, Doyle H, Blasco J, Redmond G et al (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186

    Article  PubMed  CAS  Google Scholar 

  • Tsai TL, Hou CC, Wang HC et al (2012) Nucleocytoplasmic transport blockage by SV40 peptide-modified gold nanoparticles induces cellular autophagy. Int J Nanomedicine 7:5215–5234

    PubMed  CAS  Google Scholar 

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43:7939–7945

    Article  PubMed  CAS  Google Scholar 

  • Wlodkowick D, Telford W, Skommer J et al (2011) Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol 03:55–98

    Article  Google Scholar 

  • Xin GZ, Qi LW, Shi ZQ et al (2011) Strategies for integral metabolism profile of multiple compounds in herbal medicines: pharmacokinetics, metabolites characterization and metabolic interactions. Curr Drug Metab 12:809–817

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Van S, Liu J et al (2011) Physicochemical properties and biocompatibility of a polymer-paclitaxel conjugate for cancer treatment. Int J Nanomedicine 6:2557–2566

    PubMed  CAS  Google Scholar 

  • You C, Han C, Wang X et al (2012) The progress of silver nanoparticles in the anti-bacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201

    Article  PubMed  CAS  Google Scholar 

  • Zhivotovsky B (2004) Apoptosis, necrosis and between. Cell Cycle 3:64–66

    Google Scholar 

Download references

Acknowledgments

Supports from FAPESP, CNPq, INOMAT (MCTI/CNPq), NanoBioss (MCTI), and Brazilian Network on Nanotoxicology (MCTI/CNPq) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melo, P.S., Marcato, P.D., de Araújo, D.R., Durán, N. (2014). In Vitro Cytotoxicity Assays of Nanoparticles on Different Cell Lines. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_5

Download citation

Publish with us

Policies and ethics