Skip to main content

Prevention and Management of Common Musculoskeletal Injuries in Preadolescent and Adolescent Female Athletes

  • Chapter
  • First Online:
The Active Female

Abstract

Females transitioning from childhood to adolescence undergo a dramatic change in their body. In fact, this transitional period is where males and females start to diverge in terms of body composition, muscular strength, and bone mass. With the start of menses, female hormones begin to take an even more significant role on the body by greatly affecting the development/function of skeletal, muscular, and nervous systems. This rapid physiologic change during menarche exposes the female athlete’s body to musculoskeletal injury, i.e., tendons, ligaments, muscles, and bones are all at risk. The skeleton in particular, is at greater risk due to the presence of open physes or “growth plates” at the ends of growing long bones. The young female athlete is therefore more prone to the multitude of sports-related injuries, and in fact at higher risk for certain types of trauma than their adult counterparts. Heightened awareness and a certain level of precaution need to be taken to help prevent potential injury. However, if trauma does occur then appropriate steps need to be taken to treat as well as protect the injured site for optimal healing and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilmore J, Costill D. Growth development and the young athlete: chapter 17. Special populations in sport and exercise. Physiology of sport and exercise: human kinetics. Champaign, IL: Human Kinetics; 1994. p. 401–21.

    Google Scholar 

  2. Rogol A, Clark P, Roemmich J. Growth and pubertal development in children and adolescents: effects of diet and physical activity. Am J Clin Nutr. 2000;72:521S–8.

    Article  CAS  PubMed  Google Scholar 

  3. Schoenau E, Frost HM. The “muscle-bone unit” in children and adolescents. Calcif Tissue Int. 2002 ;70:405–7.

    Article  CAS  PubMed  Google Scholar 

  4. Timmerman M. Medical problems of adolescent female athletes. Wis Med J. 1996;95(6):351–4.

    PubMed  CAS  Google Scholar 

  5. Cassas KJ, Cassettari-Wayhs A. Childhood and adolescent sports-related overuse injuries. Am Fam Physician. 2006;73(6):1014–22.

    PubMed  Google Scholar 

  6. Brooks GA, Fahey TD, Baldwin KM. Exercise physiology: human bioenergetics and its applications. 4th ed. New York, NY: McGraw-Hill; 2005.

    Google Scholar 

  7. Borms J. The child and exercise: an overview. J Sports Sci. 1986;4:3–20.

    Article  CAS  PubMed  Google Scholar 

  8. Bencke J, Damsgaard R, Saekmose A, Jorgensen P, Klausen K. Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scand J Med Sci Sports. 2002;12:171–8.

    Article  CAS  PubMed  Google Scholar 

  9. Whiting WC, Zernicke RF. Biomechanics of musculoskeletal injury. Champaign, IL: Human Kinetics; 1998.

    Google Scholar 

  10. Ahmad C, Clark M, Heilmann N, Schoeb S, Gardner T, Levine W. Effect of gender and maturity on quadriceps-to-hamstring strength ratio and anterior cruciate ligament laxity. Am J Sports Med. 2006;34(3):370–4.

    Article  PubMed  Google Scholar 

  11. Barber-Westin S, Noyes F, Galloway M. Jump-land characteristics and muscle strength development in young athletes a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med. 2006;34(3):375–84.

    Article  PubMed  Google Scholar 

  12. Hewett T, Ford K, Myer G. Anterior cruciate ligament injuries in female athletes. Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sports Med. 2006;34(3):490–8.

    Article  PubMed  Google Scholar 

  13. Withrow T, Huston L, Wojtys E, Ashton-Miller J. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med. 2006;34(2):269–74.

    Article  PubMed  Google Scholar 

  14. Verma R, Sherman O. Athletic stress fractures: part II. The lower body part III. The upper body—with a section on the female athlete. Am J Orthop. 2001;30:848–60.

    PubMed  CAS  Google Scholar 

  15. Ogden JA. Anatomy and physiology of skeletal development. In: Ogden JA, editor. Skeletal injury in the child. 2nd ed. Philadelphia: Saunders; 1990. p. 42.

    Google Scholar 

  16. Hewett T, Zazulak B, Myer G, Ford K. A review of electromyographic activation levels, timing differences, and increased anterior cruciate ligament injury incidence in female athletes. Br J Sports Med. 2005;39:347–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Powell J, Barber-Foss K. Sex-related injury patterns among selected high school sports. Am J Sports Med. 2000;28(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  18. Kaeding CC, Whitehead R. Musculoskeletal injuries in adolescents. Adolesc Med. 1998;25(1):211–23.

    CAS  Google Scholar 

  19. Maffulli N, Del Buno A. Anterior cruciate ligament tears in children. Surgeon. 2012. doi:10.1016/j.surge.2012.02.003.

    Article  PubMed  Google Scholar 

  20. Henry J, Chotel F, Chouteau J, Fessy MH, Berard J, Moyen B. Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity? Knee Surg Sports Traumatol Arthrosc. 2009;17:748–55.

    Article  PubMed  Google Scholar 

  21. Cofield RH, Bryan RS. Acute dislocation of the patella: results of conservative treatment. J Trauma. 1977;17:526–31.

    Article  CAS  PubMed  Google Scholar 

  22. Bizzini M, Childs JD, Piva SR, Delitto A. Systematic review of the quality of randomized controlled trials for patellofemoral pain syndrome. J Ortho Sports Phys Ther. 2003;33:4–20.

    Article  Google Scholar 

  23. Deitch J, Mehlman CT, Foad SL. Traumatic shoulder dislocation in the adolescents. Am J Sports Med. 2003;31:758–63.

    Article  PubMed  Google Scholar 

  24. Patritti B. Running shoe cushioning impacts foot-ground interface. Biomechanics. 2004: 57–67.

    Google Scholar 

  25. Benjamin H, Glow K. Strength training for children: risks versus benefits. Illinois chapter AAP. Illinois pediatrician sports medicine articles. http://www.illinoisaap.org/sportsarticles.htm.

  26. Faigenbaum A, Kang J. Youth strength training: facts, fallacies and program design considerations. Am Coll Sports Med. 2005;15(4):5–7.

    Google Scholar 

  27. Faigenbaum A., Chu D. Plyometric training for children and adolescents. Am Coll Sports Med. 2001.

    Google Scholar 

  28. Myer G, Ford K, McLean S, Hewett T. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3):445–55.

    Article  PubMed  Google Scholar 

  29. Balabinis C, Psarakis C, Moukas M, Vassiliou M, Behrakis P. Early phase changes by concurrent endurance and strength training. J Strength Cond Res. 2003;17(2):393–401.

    Article  PubMed  Google Scholar 

  30. Bernhardt D. Strength training by children and adolescents. Am Acad Pediatr. 2001;107(6):1470–2.

    CAS  Google Scholar 

  31. Nelson AG, Driscoll NM, Landin DK, Young MA, Schexnayder IC. Acute effects of passive muscle stretching on sprint performance. J Sports Sci. 2005;23(5):449–54.

    Article  PubMed  Google Scholar 

  32. Bartlett MJ, Warren PJ. Effects of warming up on knee proprioception before sporting activity. Am J Sports Med. 2002;36(2):132–4.

    CAS  Google Scholar 

  33. Herbert R, Gabriel M. Effects of stretching before and after exercising on muscle soreness and risk of injury: systematic review. BMJ. 2002;325:1–5.

    Article  Google Scholar 

  34. McHugh MP, Cosgave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports. 2010;20:169–81.

    PubMed  CAS  Google Scholar 

  35. Izquierdo M, Hakkinen K, Gonzalez-Badillo J, Ibanez J, Gorostiaga E. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87:264–71.

    Article  PubMed  Google Scholar 

  36. Guy J, Micheli L. Strength training for children and adolescents. Am Acad Orthop Surg. 2001;9(1):29–36.

    Article  CAS  Google Scholar 

  37. Power K, Behm MD, Cahill F, Carroll M, Young W. An acute bout of static stretching: effects on force and jumping performance. Med Sci Sports Exerc. 2004;36(8):1389–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimi Zumwalt M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zumwalt, M., Dowling, B. (2014). Prevention and Management of Common Musculoskeletal Injuries in Preadolescent and Adolescent Female Athletes. In: Robert-McComb, J.J., Norman, R.L., Zumwalt, M. (eds) The Active Female. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8884-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8884-2_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8883-5

  • Online ISBN: 978-1-4614-8884-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics