Skip to main content

Applications of Probabilistic and Related Logics to Decision Support in Medicine

  • Chapter
  • First Online:
Computational Medicine in Data Mining and Modeling

Abstract

Since the late 60s, probability theory has found application in development of various medical expert systems. Bayesian analysis, which is essentially an optimal path finding through a graph called Bayesian network, has been (and still is) successfully applied in so-called sequential diagnostics, when the large amount of reliable relevant data is available. The graph (network) represents our knowledge about connections between studied medical entities (symptoms, signs, diseases); the Bayes formula is applied in order to find the path (connection) with maximal conditional probability. Moreover, a priori and conditional probabilities were used to define a number of measures designed specifically to handle uncertainty, vague notions, and imprecise knowledge. Some of those measures were implemented in MYCIN in the early 70s [96]. The success of MYCIN has initiated construction of rule-based expert systems in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abadi and J. Y. Halpern. Decidability and expressiveness for first-order logics of probability. Information and Computation 112: 1–36, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  2. K.-P. Adlassing, G. Kolarz. CADIAG-2: computer-assisted medical diagnosis using fuzzy subsets. In: M. Gupta, E. Sanchez (eds.), Approximate reasoning in Dexision analysis: 219–247, North-Holland 1982.

    Google Scholar 

  3. E. W. Adams. The logic of conditionals. Reidel, Dordrecht 1975.

    Book  MATH  Google Scholar 

  4. N. Alechina. Logic with probabilistic operators. In Proc. of the ACCOLADE ’94: 121–138, 1995.

    Google Scholar 

  5. L. Amgoud, S. Kaci. An argumentation framework for merging conflicting knowledge bases. International Journal of Approximate Reasoning 45(2007), pp. 321–340.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Benferhat, D. Dubois and H. Prade. Possibilistic and standard probabilistic semantics of conditional knowledge bases. Journal of Logic and Computation 9(6): 873–895, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Benferhat, A. Saffiotti, P. Smets. Belief functions and default reasoning. Artificial Intelligence (122): 1–69, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Bezzazi, R. Pino Pérez. Rational Transitivity and its models. Proceedings of the 26th International Symposium on Multiple-Valued Logic: 160–165, IEEE Computer Society Press, 1996.

    Google Scholar 

  9. H. Bezzazi, D. Makinson, R. Pino Pérez. Beyond rational monotony: some strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and Computation 7(5): 605–631, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Doder, Z. Marković, Z. Ognjanović, A. Perović, M. Rašković: A Probabilistic Temporal Logic That Can Model Reasoning about Evidence. FoIKS 2010, LNCS 5956: 9–24, Springer 2010.

    Google Scholar 

  11. D. Doder, M. Rašković, Z. Marković, Z. Ognjanović. Measures of inconsistency and defaults. International Journal of Approximate Reasoning 51: 832–845, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Doder. A logic with big-stepped probabilities that can model nonmonotonic reasoning of system P. Publications de l’Institut Mathématique, ns. 90(104): 13–22, 2011.

    Google Scholar 

  13. D. Doder, A. Perović, Zoran Ognjanović: Probabilistic Approach to Nonmonotonic Consequence Relations. ECSQARU 2011, LNCS 6717: 459–471, Springer 2011.

    Google Scholar 

  14. D. Doder, Z. Ognjanović, Z. Marković. An Axiomatization of a First-order Branching Time Temporal Logic, Journal of Universal Computer Science 16(11): 1439–1451, 2010.

    MathSciNet  MATH  Google Scholar 

  15. D. Doder, J. Grant, Z. Ognjanović. Probabilistic logics for objects located in space and time. To appear in Journal of logic and computation, doi: 10.1093/logcom/exs054.

  16. D. Dubois, J. Lang, H. Prade. Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3, ed. D. M. Gabbay et al., Oxford University Press (1994), pp. 439–513.

    Google Scholar 

  17. D. Dubois, H. Prade. Possiblistic logic: a retrospective and prospective view. Fuzzy sets and systems 144: 3–23, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Dubois, L. Godo, H. Prade. Weighted logic for artificial intelligence: an introductory discussion. In ECAI-2012 workshop Weighted logic for artificial intelligence (eds L. Godo, H. Prade): 1–7, 2012.

    Google Scholar 

  19. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(1995), pp. 321–357.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Đorđević, M. Rašković, and Z. Ognjanović. Completeness theorem for propositional probabilistic models whose measures have only finite ranges. Archive for Mathematical Logic 43, 557–563, 2004.

    Article  MathSciNet  Google Scholar 

  21. R. Fagin, J. Halpern and N. Megiddo. A logic for reasoning about probabilities. Information and Computation 87(1–2): 78–128, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Freund. Injective models and disjunctive relations. Journal of Logic and Computation 3(3): 231–247, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Freund, D. Lehmann. On negation rationality. Journal of Logic and Computation 6(2): 263–269, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Friedman, J.Y. Halpern. Plausibility measures and default reasoning. Journal of the ACM 48: 648–685, 2011.

    Article  MathSciNet  Google Scholar 

  25. D. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. Logics and models of concurrent systems: 439–485, Springer 1985.

    Google Scholar 

  26. D. M. Gabbay and A. Hunter. Making inconsistency respectable (Part 1). In: Fundamentals of Artificial Intelligence Research. Lecture Notes in Artificial Intelligence 535, Springer (1991), pp. 19–32.

    Google Scholar 

  27. P. Gardenfors and H. Rott. Belief revision. In: Handbook of Logic in Artificial Intelligence and Logic Programming Vol. 4, Oxford University Press (1995), pp. 35–132.

    Google Scholar 

  28. L. Godo, F. Esteva, P. Hájek. Reasoning about probability using fuzzy logic. Neural network world 10(5): 811–824, 2000.

    Google Scholar 

  29. L. Godo, E. Marchioni. Coherent conditional probability in a fuzzy logic setting. Logic journal of the IGPL 14(3): 457–481, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Gorry, O. Barnett. Sequential Diagnosis by Computer. The Journal of the American Medical Association 205(12): 849–854, 1968.

    Article  Google Scholar 

  31. J. Grant, A. Hunter. Measuring inconsistency in knowledge bases. Journal of Intelligent Information Systems 27: 159–184, 2006.

    Article  Google Scholar 

  32. J. Grant, F. Parisi, A. Parker, and V.S. Subrahmanian. An agm-style belief revision mechanism for probabilistic spatio-temporal logics. Artificial Intelligence 174: 72–104, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Grant, A. Hunter. Measuring the good and the bad in inconsistent information. Proc. of IJCAI 2011: 2632–2637, 2011.

    Google Scholar 

  34. T. Hailperin. Sentential Probability Logic, Origins, Development, Current Status, and Technical Applications. Lehigh University Press, 1996.

    Google Scholar 

  35. P. Hajék. Metamathematics of Fuzzy Logic. Kluwer 1998.

    Google Scholar 

  36. J. Halpern. Reasoning about uncertainty. The MIT Press, 2003.

    Google Scholar 

  37. J. Halpern, R. Pucella. A logic for reasoning about evidence. Journal of Artificial Intelligence Research 26 (2006), pp. 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Hunter and S. Konieczny. Approaches to measuring inconsistent information. In: Inconsistency Tolerance. Lecture Notes in Computer Science 3300, Springer (2005), pp. 191–236.

    Google Scholar 

  39. A. Hunter and S. Konieczny. Shapely inconsistency values. In: Proceedings of the 10th International Conference on Knowledge Representation (2006), pp. 249–259.

    Google Scholar 

  40. A. Hunter and S. Konieczny. Measuring inconsistency through minimal inconsistent sets. In: Proceedings of the 11th International Conference on Knowledge Representation), AAAI Press (2008), pp. 358–366.

    Google Scholar 

  41. A. Hunter. Paraconsistent logics. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 2, ed. D. M. Gabbay and Ph Smets, Kluwer (1998), pp. 11–36.

    Google Scholar 

  42. A. Ilić-Stepić, Z. Ognjanović, N. Ikodinović, A. Perović: A p-adic probability logic. Math. Log. Q. 58(4–5): 263–280 (2012)

    Article  MATH  Google Scholar 

  43. N. Ikodinović. Craig interpolation theorem for classical propositional logic with some probability operators. Publications de L’Institut Mathematique Ns. 69(83): 27–33, 2001.

    Google Scholar 

  44. N. Ikodinović and Z. Ognjanović. A logic with coherent conditional probabilities. ECSQARU 2005, LNAI 3571: 726–736, Springer 2005.

    Google Scholar 

  45. D. Jovanović, N. Mladenović and Z. Ognjanović. Variable Neighborhood Search for the Probabilistic Satisfiability Problem. In Metaheuristics: Progress in Complex Systems Optimization (edts. K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl, M. Reimann), Springer Series: Operations Research/Computer Science Interfaces Series vol. 39:173–188. Springer 2007.

    Google Scholar 

  46. B. Jaumard, P. Hansen, and M. P. de Aragao. Column generation methods for probabilistic logic. ORSA Journal on Computing 3: 135–147, 1991.

    Article  MATH  Google Scholar 

  47. H.J. Keisler. Model theory for infinitary logic. North-Holland 1971.

    Google Scholar 

  48. H. J. Keisler. Hyperfinite model theory. In: Logic Colloquium 76. (eds. R. O. Gandy, J. M. E. Hyland): 5–110. North-Holland 1977.

    Google Scholar 

  49. H. J. Keisler. Probability quantifiers. In: Model Theoretic Logics, (eds. J. Barwise and S. Feferman): 509–556. Springer 1985.

    Google Scholar 

  50. K. Knight. Measuring inconsistency. Journal of Philosophical Logic 31 (2001), pp. 77–91.

    Article  Google Scholar 

  51. S. Konieczny, J. Lang and P. Marquis. Quantifying information and contradiction in propositional logic through epistemic actions. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (2003), pp. 106–111.

    Google Scholar 

  52. S. Konieczny, J. Lang and P. Marquis. Reasoning under inconsistency: the forgotten connective. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (2005), pp. 484–489.

    Google Scholar 

  53. S. Kraus, D. Lehmann and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44 (1990), pp. 167–207.

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial Intelligence 55 (1992), pp. 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Lukasiewicz. Probabilistic Default Reasoning with Conditional Constraints. Annals of Mathematics and Artificial Intelligence 34: 35–88, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Makinson. General patterns in nonmonotonic reasoning. In: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3, Clarendon Press, Oxford (1994), pp. 35–110.

    Google Scholar 

  57. Z. Marković, Z. Ognjanović, and M. Rašković. A probabilistic extension of intuitionistic logic. Mathematical Logic Quarterly 49: 415–424, 2003.

    Article  MATH  Google Scholar 

  58. Miloš Milošević, Zoran Ognjanović. A first-order conditional probability logic, Logic Journal of IGPL 20(1): 235–253, 2012.

    Article  MATH  Google Scholar 

  59. N. Nilsson. Probabilistic logic. Artificial Intelligence, 28: 71–87, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  60. N. Nilsson. Probabilistic logic revisited. Artificial Intelligence, 59: 39–42, 1993.

    Article  MathSciNet  Google Scholar 

  61. Z. Ognjanović, M. Rašković. A logic with higher order probabilities. Publications de L’Institute Matematique, n.s. 60(74): 1–4, 1996.

    Google Scholar 

  62. Z. Ognjanović, M. Rašković. Some probability logics with new types of probability operators. Journal of Logic and Computation 9(2): 181–195, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  63. Z. Ognjanović, M. Rašković. Some first-order probability logics. Theoretical Computer Science 247(1–2): 191–212, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  64. Z. Ognjanović, J. Kratica and M. Milovanović. A genetic algorithm for satisfiability problem in a probabilistic logic: A first report. LNCS/LNAI 2143: 805–816, Springer 2001.

    Google Scholar 

  65. Z. Ognjanović, U. Midić and J. Kratica. A genetic algorithm for probabilistic SAT problem. In: Artificial Intelligence and Soft Computing ICAISC 2004 LNCS/LNAI 3070: 462–467, Springer 2004.

    Google Scholar 

  66. Z. Ognjanović, Z. Marković and M. Rašković. Completeness theorem for a Logic with imprecise and conditional probabilities. Publications de L’Institut Mathematique Ns. 78(92): 35–49, 2005.

    Article  Google Scholar 

  67. Z. Ognjanović, U. Midić and N. Mladenović. A Hybrid Genetic and Variable Neighborhood Descent for Probabilistic SAT Problem. LNCS 3636: 42–53, Springer 2005.

    Google Scholar 

  68. Z. Ognjanović, N. Ikodinović and Z. Marković. A logic with Kolmogorov style conditional probabilities. In Proceedings of the 5th Panhellenic logic symposium, Athens, Greece, July 25–28, 2005: 111–116.

    Google Scholar 

  69. Z. Ognjanović. Discrete Linear-time Probabilistic Logics: Completeness, Decidability and Complexity. Journal of Logic Computation 16(2): 257–285, 2006.

    Article  MATH  Google Scholar 

  70. Z. Ognjanović, A. Perović, M. Rašković. Logics with the Qualitative Probability Operator. Logic Journal of IGPL 16(2):105–120, 2008.

    Article  MATH  Google Scholar 

  71. Z. Ognjanović, M. Rašković, Z. Marković. Probability logics. In Logic in computer science (ed Z. Ognjanović): 35–111, Matematički Institut SANu, 2009, ISBN 978-86-80593-40-1.

    Google Scholar 

  72. Z. Ognjanović, D. Doder, Z. Marković. A Branching Time Logic with Two Types of Probability Operators SUM-2011, LNCS 6929: 219–232, Springer 2011.

    Google Scholar 

  73. Z. Ognjanović, Z. Marković, M. Rašković, D. Doder, A. Perović: A propositional probabilistic logic with discrete linear time for reasoning about evidence. Ann. Math. Artif. Intell. 65(2–3): 217–243, 2012.

    MathSciNet  MATH  Google Scholar 

  74. J. Pearl. System Z: a natural ordering of defaults with tractable applications to default reasoning. Proceedings of the 3rd Conference on the Theoretical Aspects of Reasoning About Knowledge: 121–135, 1990.

    Google Scholar 

  75. A. Perović, Z. Ognjanović, M. Rašković, Z. Marković: Qualitative Possibilities and Necessities. ECSQARU 2009, LNCS 5590: 651–662, Springer 2009.

    Google Scholar 

  76. A. Perović, Z. Ognjanović, Miodrag Rašković, D. G. Radojević: Finitely additive probability measures on classical propositional formulas definable by Gödel’s t-norm and product t-norm. Fuzzy Sets and Systems 169(1): 65–90, 2011.

    Google Scholar 

  77. A. Perović, D. Doder, Z. Ognjanović: On Real-Valued Evaluation of Propositional Formulas. FoIKS 2012, LNCS 7153: 264–277, Springer 2012.

    Google Scholar 

  78. A. Perović, A. Takači, Srđan Škrbić: Formalising PFSQL queries using L∏½ fuzzy logic. Mathematical Structures in Computer Science 22(3): 533–547, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  79. D. Picado-Muino. Measuring and repairing inconsistency in probabilistic knowledge bases. International Journal of Approximate Reasoning 52 (2011), pp. 828–840.

    Article  MathSciNet  MATH  Google Scholar 

  80. D. Picado-Muino. Measuring and repairing inconsistency in knowledge bases with graded truth. Fuzzy Sets and Systems 197 (2012), pp. 108–122.

    Article  MathSciNet  MATH  Google Scholar 

  81. G. Priest. Paraconsistent logics. In: Handbook of Philosophical Logic, Vol. 6, Kluwer (2002).

    Google Scholar 

  82. M. Rašković. Completeness theorem for biprobability models. Journal of Symbolic Logic 51(3): 586–590, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Rašković. Completeness theorem for singular biprobability models. Proc. of Amer. Math. Soc. 102: 389–392, 1988.

    MATH  Google Scholar 

  84. M. Rašković. Completeness theorem for a monadic logic with both ordinary first-order and probability quantifiers. Publications de L’Institut Mathematique Ns. 47(61): 1–4, 1990.

    Google Scholar 

  85. M. Rašković. A completeness theorem for an infinitary intuitionistic logic with both ordinary and probability quantifiers. Publications de L’Institut Mathematique Ns. 50(64): 7–13, 1991.

    Google Scholar 

  86. M. Rašković. Classical logic with some probability operators. Publications de l’Institut Mathematique, n.s. 53(67): 1–3, 1993.

    Google Scholar 

  87. M. Rašković, R. Đorđević. Continuous time probability logic. Publications de L’Institut Mathematique Ns. 57(71): 143–146, 1995.

    Google Scholar 

  88. M. Rašković, R. Đorđević. Probability Quantifiers and Operators. VESTA, Beograd, 1996.

    MATH  Google Scholar 

  89. M. Rašković, Z. Ognjanović. A first order probability logic LP Q . Publications de L’Institute Matematique, ns. 65(79): 1–7, 1999.

    Google Scholar 

  90. M. Rašković, R. Đorđević, Z. Marković. A logic of approximate reasoning. Publications de L’Institut Mathematique Ns. 69(83): 8–12, 2001.

    Google Scholar 

  91. M. Rašković, Z. Ognjanović, and Z. Marković. A Logic with Conditional Probabilities. JELIA 2004, LNCS 3229: 226–238, Springer 2004.

    Google Scholar 

  92. M. Rašković, Z. Marković and Z. Ognjanović. A logic with approximate conditional probabilities that can model default reasoning. International Journal of Approximate Reasoning 49(1):52–66, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  93. K. P. S. Bhaskara Rao, M. Bhaskara Rao. Theory of charges. Academic press 1983.

    Google Scholar 

  94. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence 32: 57–95, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  95. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and Decision 1 (1970), pp. 179–219.

    Article  MATH  Google Scholar 

  96. E. Shortliffe, B. Buchanan. A model of inexact reasoning in medicine. Mathematical Biosciences 23: 351–379, 1975.

    Article  MathSciNet  Google Scholar 

  97. A. Sistla and E. Clarke. The complexity of propositional linear temporal logic. Journal of the ACM, 32(3): 733–749, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  98. R. Sorensen. Blindspots. Claredon Press, Oxford, 1988.

    Google Scholar 

  99. R. C. Stalnaker. A theory of conditionals. In: Studies in Logical Theory (ed. N. Rescher), American Philosophical Quarterly Monograph Series, Vol. 2, Blackwell, Oxford, 1968.

    Google Scholar 

  100. R. C. Stalnaker. Nonmonotonic consequence relations. Fundamenta Informaticae (21): 7–21, 1994.

    MathSciNet  MATH  Google Scholar 

  101. K. D. Stroyan, W. A. J. Luxemburg. Introduction to the theory of infinitesimals. Academic Press 1976.

    Google Scholar 

  102. M. Thimm. Measuring inconsistency in probabilistic knowledge bases. Twenty-fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press (2009), pp. 530–537.

    Google Scholar 

  103. T. Vetterlein, K.-P. Adlassing. The medical expert system CADIAG-2, and the limits of reformulation by means of formal logics. In: Tagungsband der eHealth2009 und eHealth Benchmarking 2009: 123–128, 2009.

    Google Scholar 

  104. W. van der Hoeck. Some consideration on the logics P F D. Journal of Applied Non-Classical Logics 7(3): 287–307, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  105. Z. Zhu, D. Zhang, S. Chen, W. Zhu. Some contributions to nonmonotonic consequence. Journal of Computer Science and Technology, 16(4): 297–314, 2001.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to professor Milan Stošović, MD, for his useful suggestions and comments. This work is partially supported by Serbian Ministry of Education and Science through grants III44006, III41103, ON174062, and TR36001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Perović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perović, A., Doder, D., Ognjanović, Z. (2013). Applications of Probabilistic and Related Logics to Decision Support in Medicine. In: Rakocevic, G., Djukic, T., Filipovic, N., Milutinović, V. (eds) Computational Medicine in Data Mining and Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8785-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8785-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8784-5

  • Online ISBN: 978-1-4614-8785-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics