Skip to main content

Genetics of Childhood Obesity

  • Chapter
  • First Online:
The Genetics of Obesity

Abstract

Obesity is increasingly becoming a major health issue for both the USA and the rest of the world, and presents health care systems with a huge economic problem. The rate at which children are becoming obese is dramatically increasingly, particularly since the turn of the twenty-first century. Although environmental factors are known to play a key role, childhood obesity is also known to have an underlying genetic component contributing to its complex etiology. Elucidating the genetic architecture of childhood obesity will not only help prevention and treatment of pediatric cases but also will have fundamental implications for diseases that present later on in life. Furthermore, the execution of genome-wide surveys of childhood obesity have uncovered novel loci that turned out not to be within the detection range in an adult setting as a consequence of environmental factor clouding, supporting the notion that the pediatric setting may be optimal for uncovering obesity genes. This new era of genome-wide association studies (GWAS) is delivering compelling signals associated with obesity, particularly with peer research groups sharing a very strong consensus on what the key loci are that contribute to the pathogenesis of this trait. Although we suggest that the pediatric setting can be harnessed for obesity gene discovery, the fact is that most BMI-associated loci identified to date were found in the adult setting, so there is a requirement to elucidate which of these variants contribute early on in life and therefore predisposing an individual to related diseases in later life. In this chapter, we outline what advances have been made in determining which genetic factors are conferring their effects on childhood obesity and which ones go on to have an impact in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Troiano RP, Flegal KM (1998) Overweight children and adolescents: description, epidemiology, and demographics. Pediatrics 101:497–504

    CAS  PubMed  Google Scholar 

  2. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    CAS  PubMed  Google Scholar 

  3. DeFronzo RA, Ferrannini E (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194

    CAS  PubMed  Google Scholar 

  4. Nicklas TA, Baranowski T, Cullen KW, Berenson G (2001) Eating patterns, dietary quality and obesity. J Am Coll Nutr 20:599–608

    CAS  PubMed  Google Scholar 

  5. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH (1997) Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337:869–873

    CAS  PubMed  Google Scholar 

  6. Parsons TJ, Power C, Logan S, Summerbell CD (1999) Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord 23(Suppl 8):S1–S107

    PubMed  Google Scholar 

  7. Must A (2003) Does overweight in childhood have an impact on adult health? Nutr Rev 61:139–142

    PubMed  Google Scholar 

  8. Mossberg HO (1989) 40-year follow-up of overweight children. Lancet 2:491–493

    CAS  PubMed  Google Scholar 

  9. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH (1992) Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med 327:1350–1355

    CAS  PubMed  Google Scholar 

  10. Dietz WH (1998) Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics 101:518–525

    CAS  PubMed  Google Scholar 

  11. Daniels SR et al (2005) Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation 111:1999–2012

    PubMed  Google Scholar 

  12. Eckel RH (2003) Obesity: a disease or a physiologic adaptation for survival? In: Eckel RH (ed) Obesity mechanisms and clinical management. Lippincott, Williams & Wilkins, Philadelphia, PA, pp 3–30

    Google Scholar 

  13. World Health Organization (2012) Obesity and overweight. Fact sheet no 311. WHO, Geneva

    Google Scholar 

  14. Flegal KM, Wei R, Ogden C (2002) Weight-for-stature compared with body mass index-for-age growth charts for the United States from the Centers for Disease Control and Prevention. Am J Clin Nutr 75:761–766

    CAS  PubMed  Google Scholar 

  15. Himes JH, Dietz WH (1994) Guidelines for overweight in adolescent preventive services: recommendations from an expert committee. The Expert Committee on Clinical Guidelines for Overweight in Adolescent Preventive Services. Am J Clin Nutr 59:307–316

    CAS  PubMed  Google Scholar 

  16. Flegal KM, Troiano RP (2000) Changes in the distribution of body mass index of adults and children in the US population. Int J Obes Relat Metab Disord 24:807–818

    CAS  PubMed  Google Scholar 

  17. Friedman JM (2004) Modern science versus the stigma of obesity. Nat Med 10:563–569

    CAS  PubMed  Google Scholar 

  18. Lyon HN, Hirschhorn JN (2005) Genetics of common forms of obesity: a brief overview. Am J Clin Nutr 82:215S–217S

    CAS  PubMed  Google Scholar 

  19. Hebebrand J, Friedel S, Schauble N, Geller F, Hinney A (2003) Perspectives: molecular genetic research in human obesity. Obes Rev 4:139–146

    CAS  PubMed  Google Scholar 

  20. Farooqi IS, O’Rahilly S (2005) New advances in the genetics of early onset obesity. Int J Obes (Lond) 29(1149–52)

    Google Scholar 

  21. Bell CG, Walley AJ, Froguel P (2005) The genetics of human obesity. Nat Rev Genet 6:221–234

    CAS  PubMed  Google Scholar 

  22. Stunkard AJ et al (1986) An adoption study of human obesity. N Engl J Med 314:193–198

    CAS  PubMed  Google Scholar 

  23. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE (1990) The body-mass index of twins who have been reared apart. N Engl J Med 322:1483–1487

    CAS  PubMed  Google Scholar 

  24. Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990) Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6:1–27

    CAS  PubMed  Google Scholar 

  25. Kondo I, Hamabe J, Yamamoto K, Niikawa N (1990) Exclusion mapping of the Cohen syndrome gene from the Prader-Willi syndrome locus. Clin Genet 38:422–426

    CAS  PubMed  Google Scholar 

  26. Russell-Eggitt IM et al (1998) Alstrom syndrome. Report of 22 cases and literature review. Ophthalmology 105:1274–1280

    CAS  PubMed  Google Scholar 

  27. Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA (1997) Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 34:92–98

    CAS  PubMed  Google Scholar 

  28. Bruford EA et al (1997) Linkage mapping in 29 Bardet-Biedl syndrome families confirms loci in chromosomal regions 11q13, 15q22.3-q23, and 16q21. Genomics 41:93–99

    CAS  PubMed  Google Scholar 

  29. Young TL et al (1999) A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 64:900–904

    CAS  PubMed  Google Scholar 

  30. Ingalls AM, Dickie MM, Snell GD (1996) Obese, a new mutation in the house mouse. Obes Res 4:101

    CAS  PubMed  Google Scholar 

  31. Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    CAS  PubMed  Google Scholar 

  32. Halaas JL et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    CAS  PubMed  Google Scholar 

  33. Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

  34. Chua SC Jr et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996

    CAS  PubMed  Google Scholar 

  35. Considine RV et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    CAS  PubMed  Google Scholar 

  36. Montague CT et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    CAS  PubMed  Google Scholar 

  37. Echwald SM et al (1997) Identification of two novel missense mutations in the human OB gene. Int J Obes Relat Metab Disord 21:321–326

    CAS  PubMed  Google Scholar 

  38. Oksanen L et al (1997) Novel polymorphism of the human ob gene promoter in lean and morbidly obese subjects. Int J Obes Relat Metab Disord 21:489–494

    CAS  PubMed  Google Scholar 

  39. Masuo K et al (2008) Leptin-receptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic nerve activation in a Caucasian male population. Hypertens Res 31:1093–1100

    CAS  PubMed  Google Scholar 

  40. Clement K et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401

    CAS  PubMed  Google Scholar 

  41. Krude H et al (2003) Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 88:4633–4640

    CAS  PubMed  Google Scholar 

  42. Flickinger TW, Salz HK (1994) The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev 8:914–925

    CAS  PubMed  Google Scholar 

  43. Krude H et al (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    CAS  PubMed  Google Scholar 

  44. Challis BG et al (2002) A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet 11:1997–2004

    CAS  PubMed  Google Scholar 

  45. Jackson RS et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16:303–306

    CAS  PubMed  Google Scholar 

  46. Farooqi IS et al (2007) Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab 92:3369–3373

    CAS  PubMed  Google Scholar 

  47. Benzinou M et al (2008) Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet 40:943–945

    CAS  PubMed  Google Scholar 

  48. Farooqi IS et al (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106:271–279

    CAS  PubMed  Google Scholar 

  49. Farooqi IS et al (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–1095

    CAS  PubMed  Google Scholar 

  50. Krakoff J et al (2008) Lower metabolic rate in individuals heterozygous for either a frameshift or a functional missense MC4R variant. Diabetes 57:3267–3272

    CAS  PubMed  Google Scholar 

  51. Malakooti J et al (1999) Molecular cloning, tissue distribution, and functional expression of the human Na(+)/H(+) exchanger NHE2. Am J Physiol 277:G383–G390

    CAS  PubMed  Google Scholar 

  52. Yeo GS et al (2004) A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 7:1187–1189

    CAS  PubMed  Google Scholar 

  53. Holder JL Jr, Butte NF, Zinn AR (2000) Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet 9:101–108

    CAS  PubMed  Google Scholar 

  54. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    CAS  PubMed  Google Scholar 

  55. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429:446–452

    CAS  PubMed  Google Scholar 

  56. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Google Scholar 

  57. Reich D et al (2005) A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 37:1113–1118

    CAS  PubMed  Google Scholar 

  58. Steemers FJ et al (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    CAS  PubMed  Google Scholar 

  59. The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Google Scholar 

  60. Manolio TA, Collins FS (2009) The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med 60:443–456

    CAS  PubMed  Google Scholar 

  61. Herbert A et al (2006) A common genetic variant is associated with adult and childhood obesity. Science 312:279–283

    CAS  PubMed  Google Scholar 

  62. Loos RJ, Barroso I, O’Rahilly S, Wareham NJ (2007) Comment on “A common genetic variant is associated with adult and childhood obesity”. Science 315:187, author reply 187

    CAS  PubMed  Google Scholar 

  63. Dina C et al (2007) Comment on “A common genetic variant is associated with adult and childhood obesity”. Science 315:187, author reply 187

    CAS  PubMed  Google Scholar 

  64. Rosskopf D et al (2007) Comment on “A common genetic variant is associated with adult and childhood obesity”. Science 315:187, author reply 187

    CAS  PubMed  Google Scholar 

  65. Lyon HN et al (2007) The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet 3:e61

    PubMed  Google Scholar 

  66. Hotta K et al (2008) INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese. J Hum Genet 53:857–862

    CAS  PubMed  Google Scholar 

  67. Frayling TM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    CAS  PubMed  Google Scholar 

  68. Hinney A et al (2007) Genome Wide Association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2:e1361

    PubMed  Google Scholar 

  69. Dina C et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726

    CAS  PubMed  Google Scholar 

  70. Scuteri A et al (2007) Genome-Wide Association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115

    PubMed  Google Scholar 

  71. Fawcett KA, Barroso I (2010) The genetics of obesity: FTO leads the way. Trends Genet 26:266–274

    CAS  PubMed  Google Scholar 

  72. Grant SF et al (2008) Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One 3:e1746

    PubMed  Google Scholar 

  73. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Google Scholar 

  74. Zeggini E et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    CAS  PubMed  Google Scholar 

  75. Fox CS et al (2012) Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 8:e1002695

    CAS  PubMed  Google Scholar 

  76. Gerken T et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    CAS  PubMed  Google Scholar 

  77. Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    CAS  PubMed  Google Scholar 

  78. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN (2008) An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med 359:2558–2566

    CAS  PubMed  Google Scholar 

  79. Church C et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092

    CAS  PubMed  Google Scholar 

  80. Fischer J et al (2009) Inactivation of the Fto gene protects from obesity. Nature 458:894–898

    CAS  PubMed  Google Scholar 

  81. Meyre D et al (2010) Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes 59:311–318

    CAS  PubMed  Google Scholar 

  82. Deliard S et al (2013) The missense variation landscape of FTO, MC4R, and TMEM18 in obese children of African Ancestry. Obesity (Silver Spring) 21(159–63)

    Google Scholar 

  83. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    CAS  PubMed  Google Scholar 

  84. Loos RJ et al (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

    CAS  PubMed  Google Scholar 

  85. Willer CJ et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41:25–34

    CAS  PubMed  Google Scholar 

  86. Thorleifsson G et al (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24

    CAS  PubMed  Google Scholar 

  87. Gunstad J et al (2006) BDNF Val66Met polymorphism is associated with body mass index in healthy adults. Neuropsychobiology 53:153–156

    CAS  PubMed  Google Scholar 

  88. Speliotes EK et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    CAS  PubMed  Google Scholar 

  89. Berndt SI et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45:501–512

    CAS  PubMed  Google Scholar 

  90. Barker DJ (2012) Sir Richard Doll lecture. Developmental origins of chronic disease. Public Health 126:185–189

    CAS  PubMed  Google Scholar 

  91. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    CAS  PubMed  Google Scholar 

  92. Zhao J et al (2009) The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. Obesity (Silver Spring) 17(2254–2257)

    Google Scholar 

  93. Zhao J et al (2011) Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. Obesity (Silver Spring) 19(2436–9)

    Google Scholar 

  94. Zhao J et al (2010) Examination of all type 2 diabetes GWAS loci reveals HHEX-IDE as a locus influencing pediatric BMI. Diabetes 59:751–755

    CAS  PubMed  Google Scholar 

  95. Styrkarsdottir U et al (2009) New sequence variants associated with bone mineral density. Nat Genet 41:15–17

    CAS  PubMed  Google Scholar 

  96. Styrkarsdottir U et al (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    CAS  PubMed  Google Scholar 

  97. Richards JB et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512

    CAS  PubMed  Google Scholar 

  98. Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    CAS  PubMed  Google Scholar 

  99. Richards JB, Zheng HF, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13:576–588

    CAS  PubMed  Google Scholar 

  100. Zhao J et al (2011) BMD-associated variation at the Osterix locus is correlated with childhood obesity in females. Obesity (Silver Spring) 19(1311–4)

    Google Scholar 

  101. Hardy R et al (2010) Life course variations in the associations between FTO and MC4R gene variants and body size. Hum Mol Genet 19:545–552

    CAS  PubMed  Google Scholar 

  102. Silverwood RJ, De Stavola BL, Cole TJ, Leon DA (2009) BMI peak in infancy as a predictor for later BMI in the Uppsala Family Study. Int J Obes (Lond) 33(929–37)

    Google Scholar 

  103. Wen X, Kleinman K, Gillman MW, Rifas-Shiman SL, Taveras EM (2012) Childhood body mass index trajectories: modeling, characterizing, pairwise correlations and socio-demographic predictors of trajectory characteristics. BMC Med Res Methodol 12:38

    PubMed  Google Scholar 

  104. Rolland-Cachera MF et al (1984) Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr 39:129–135

    CAS  PubMed  Google Scholar 

  105. Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F (2006) Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond) 30(Suppl 4):S11–S17

    Google Scholar 

  106. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353:1802–1809

    CAS  PubMed  Google Scholar 

  107. Sovio U et al (2011) Association between common variation at the FTO locus and changes in body mass index from infancy to late childhood: the complex nature of genetic association through growth and development. PLoS Genet 7:e1001307

    CAS  PubMed  Google Scholar 

  108. Scherag A et al (2010) Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups. PLoS Genet 6:e1000916

    PubMed  Google Scholar 

  109. Bradfield JP et al (2012) A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet 44:526–531

    CAS  PubMed  Google Scholar 

  110. Liu W et al (2010) Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci U S A 107:11056–11061

    CAS  PubMed  Google Scholar 

  111. Fu M, Lui VC, Sham MH, Cheung AN, Tam PK (2003) HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev Dyn 228:1–10

    CAS  PubMed  Google Scholar 

  112. Dankel SN et al (2010) Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One 5:e11033

    PubMed  Google Scholar 

  113. Wheeler E et al (2013) Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45:513–517

    CAS  PubMed  Google Scholar 

  114. Grant SF et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    CAS  PubMed  Google Scholar 

  115. Helgason A et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225

    CAS  PubMed  Google Scholar 

  116. Adeyemo A et al (2010) FTO genetic variation and association with obesity in West Africans and African Americans. Diabetes 59:1549–1554

    CAS  PubMed  Google Scholar 

  117. Hassanein MT et al (2010) Fine mapping of the association with obesity at the FTO locus in African-derived populations. Hum Mol Genet 19:2907–2916

    CAS  PubMed  Google Scholar 

  118. Monda KL et al (2013) A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet 45:690–696

    CAS  PubMed  Google Scholar 

  119. Bogardus C (2009) Missing heritability and GWAS utility. Obesity (Silver Spring) 17(209–10)

    Google Scholar 

  120. Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    CAS  PubMed  Google Scholar 

  121. Walley AJ, Asher JE, Froguel P (2009) The genetic contribution to non-syndromic human obesity. Nat Rev Genet 10:431–442

    CAS  PubMed  Google Scholar 

  122. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109:1193–1198

    CAS  PubMed  Google Scholar 

  123. Blakemore AI et al (2009) A rare variant in the visfatin gene (NAMPT/PBEF1) is associated with protection from obesity. Obesity (Silver Spring) 17(1549–53)

    Google Scholar 

  124. Redon R et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    CAS  PubMed  Google Scholar 

  125. Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    CAS  PubMed  Google Scholar 

  126. Bochukova EG et al (2010) Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463:666–670

    CAS  PubMed  Google Scholar 

  127. Walters RG et al (2010) A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463:671–675

    CAS  PubMed  Google Scholar 

  128. Jacquemont S et al (2011) Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478:97–102

    CAS  PubMed  Google Scholar 

  129. Glessner JT et al (2010) A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am J Hum Genet 87:661–666

    CAS  PubMed  Google Scholar 

  130. Richards JB et al (2009) A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genet 5:e1000768

    PubMed  Google Scholar 

  131. Jarick I et al (2011) Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum Mol Genet 20:840–852

    CAS  PubMed  Google Scholar 

  132. Leff SE et al (1992) Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat Genet 2:259–264

    CAS  PubMed  Google Scholar 

  133. Nicholls RD, Saitoh S, Horsthemke B (1998) Imprinting in Prader-Willi and Angelman syndromes. Trends Genet 14:194–200

    CAS  PubMed  Google Scholar 

  134. Dong C et al (2005) Possible genomic imprinting of three human obesity-related genetic loci. Am J Hum Genet 76:427–437

    CAS  PubMed  Google Scholar 

  135. Deliard S, Zhao J, Xia Q, Grant SF (2013) Generation of high quality chromatin immunoprecipitation DNA template for high-throughput sequencing (ChIP-seq). J Vis Exp 74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Struan F. A. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grant, S.F.A. (2014). Genetics of Childhood Obesity. In: Grant, S. (eds) The Genetics of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8642-8_5

Download citation

Publish with us

Policies and ethics