Skip to main content

Abstract

The abrupt increases in temperature as well as increasing population density are two major factors, which are threatening the world’s food security. A holistic approach is needed to address this situation to overcome the risk of food paucity. Therefore the agricultural scientists worldwide need to develop the coordinated research efforts covering all disciplines that encroach on agricultural productivity to minimize the unpleasant effects of climatic changes within the available natural resources. For this, a stress-tolerant germplasm coupled with natural resource management as well as policy interventions should be devised to ensure crop productivity under unpredictable environmental conditions. The countries that are located in temperate zones may extract some benefit from this change in temperature whereas the countries located in the tropical and subtropical regions have an increased vulnerability towards the effects of rising temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RM, Hurd BH, Lenhart S, Neil L (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11(1):19–30

    Article  Google Scholar 

  • Aggarawal PK, Sinha SK (1993) Effect of probable increase in carbon dioxide and temperature on wheat yields in India. J Agric Meteorol 48(5):811–814

    Article  Google Scholar 

  • Albaladejo J (2013) Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J Soils Sediments 13(2):265–277

    Article  CAS  Google Scholar 

  • Archer D, Eby M, Brovkin V, Cao L, Mastumoto K, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 117–134

    Google Scholar 

  • Arrhenius N (1896) On the influence of carbonic acid in the air on the temperature of ground. Philos Mag Ser 5 41:251

    Article  Google Scholar 

  • Azam F, Farooq S (2005) Agriculture and global warming: evapotranspiration an important factor as compared to CO2. Pak J Biol Sci 8(11):1630–1638

    Article  CAS  Google Scholar 

  • Bals C, Harmeling S, Windfuhr M (2008) Climate change, food security and the right to adequate food. Diakoniekatastrophenhilfe, Brotfuer die Welt and Germanwatch. Germany

    Google Scholar 

  • Bardgett RD, Manning P, Morrien A (2013) Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101(2):334–343

    Article  Google Scholar 

  • Benson C, Clay E (1998) The impact of drought on sub-Saharan economies. World Bank Technical Paper 401. World Bank, Washington, DC

    Google Scholar 

  • Bosnjakovic B (2012) Geopolitics of a climate change: a review. Therm Sci 16(3):629–654

    Article  Google Scholar 

  • Bowler K (2005) Acclimation, heat shock and hardening. J Therm Biol 30:125–130

    Article  Google Scholar 

  • Brikowski TH, Lotan Y, Pearle MS (2007) Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci 105:9841–9846

    Article  Google Scholar 

  • Brown ME (2009) Markets, climate change and food security in West Africa. Environ Sci Technol 43:8016–8020

    Article  PubMed  CAS  Google Scholar 

  • Burton I (2001) Vulnerability and adaptation to climate change in the Drylands. The Global

    Google Scholar 

  • Bruton, I. (2003). IPCC Third Assessment Report-Climate Change 2001: Working Group II: Impacts, Adaptation and Vulnerability. GRID-Arendal in 2003.

    Google Scholar 

  • Caldeira K, Myhrvold NP (2012) Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environ Res Lett 7:014019

    Google Scholar 

  • Campbell WJ, Allen LH, Bowes G (1988) Effects of CO2 concentration on Rubisco activity, amount, and photosynthesis in soybean leaves. Plant Physiol 88:1310–1316

    Article  PubMed  CAS  Google Scholar 

  • CCSP (2008) Preliminary Review of Adaptation Options for Climate-Sensitive Ecosystems and Resources (PDF). A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. In: Julius SH, West JM (eds) Baron JS, Griffith B, Joyce LA, Kareiva P, Keller BD, Palmer, MA, Peterson CH, Scott JM (authors) U.S. Environmental Protection Agency, Washington, DC

  • Charlson RJ, Schwartz JM, Hales RD, Cess JA (1992) Climate forcing by atmospheric aerosols. Science 255:423–430

    Article  PubMed  CAS  Google Scholar 

  • Chidawanyika F, Mudavanhu P, Nyamukondiwa C (2012) Biologically based methods for pest management in agriculture under changing climates: challenges and future directions. Insects 3:1171–1189

    Article  Google Scholar 

  • Chijioke OB, Haile M, Waschkeit C (2011) Implications of climate change on crop yield and food accessibility in Sub-Saharan Africa. Interdisciplinary Term Paper, University of Bonn

    Google Scholar 

  • Chamberlin TC (1897) A group of hypotheses bearing on climatic changes. J Geol 5:653–683

    Article  Google Scholar 

  • Cox PM, Pearson D, Booth BB, Huntingford C, Friedlingstien P, Jones DC, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344

    Google Scholar 

  • de Silva SL (2010) Volcanic eruptions and their impact on earth’s climate. University of North Dakota, North Dakota

    Google Scholar 

  • Dell M, Jones BF, Olken BA (2008) Climate change and economic growth: evidence from the last half-century. NBER working papers, 14132. National Bureau of Economic Research

    Google Scholar 

  • Denlinger DL, Lee RE (2010) Low temperature biology of insects. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Diffenburg N (2013) Human well-being, the global emissions debt, and climate change commitment. Sustain Sci 135–144

    Google Scholar 

  • Dlugokencky ED, Tans PP (2013) Trends in atmospheric carbondioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html/. Last Accessed 11 Feb 2013

  • Environmental Protection Agency (2013) Methane science. http://www.epa.gov/outreach/scientific.html. Accessed 12 Feb 2013

  • Environmental Protection Agency (2011) Climate change and its impact. http://www.epa.gov/globalwarming/. Accessed Dec 2012

  • Fan Z, Harden J (2012) The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Glob Change Biol 19(2):604–640

    Article  Google Scholar 

  • FAO (1996) Rome declaration on world food security. World Food Summit. 13–17 Nov. Rome, Italy

    Google Scholar 

  • FAO (2000) Guidelines for national FIVIMS. Background and principles. Food and Agricultural Organization, Rome

    Google Scholar 

  • FAO (2005) Summary of the world food and agriculture statistics. Food and Agricultural Organization, Rome, Italy

    Google Scholar 

  • FAO (2008) Climate change and food security: a framework document. Food and Agricultural Organization, Rome, Italy

    Google Scholar 

  • FAO (2011) The state of food insecurity in the world. How does the international price volatility affect domestic economies and food security? Food and Agricultural Organization, Rome, Italy

    Google Scholar 

  • Fischer G, Van Velthuizen HT (1996) Climate change and global potential project: a case study of Kenya. International Institute for Applied Systems Analysis, Laxenburg, Austria

    Google Scholar 

  • Frank D, Reichstein M, Migletta F (2013) Impact of climate variability and extremes on the carbon cycle of the Mediterranean region. Adv Glob Change Res 51:31–47

    Google Scholar 

  • Fourier J (1827) Memoire sur les Temperatures du Globe Terrestre et des Escapes Planetaires. Mem Aca Inst Fr, 7, 569–604

    Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combination of elevated CO2 ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Gitz V, Ciais P (2003) Amplifying effects of land-use change on future atmospheric CO2 levels. Global Biogeochem Cycles 17 1024, doi:10.1029/2002GB001963, 1.

  • Goldman C, Coe MT, Melack JM (2012) Climate change and the floodplain lakes of the Amazon Basin. http://onlinelibrary.wiley.com/doi/10.1002/9781118470596.ch17/summary. Accessed 16 Jan 2013

  • Hanel RA, Schlachman B, Clark FD, Prokesh CH, Taylor JB, Wilson WM, Chaney L (1970) The nimbus III Michelson interferometer. Appl Opt 9(8):1767–1774

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P (2013) Climate forcing growth rates: doubling down on our Faustian bargain. Environ Res Lett 8(1):9

    Article  Google Scholar 

  • Harris GR, Sexton D, Booth B, Collins M (2013) Probabilistic projections of transient climate change. Climate Dynamics, 40 (11-12), 2937–2972

    Google Scholar 

  • Hassal SJ (2005) Arctic climate impact assessment: impacts of a warming arctic—highlights. Cambridge University Press, New York

    Google Scholar 

  • Houghton JT, Meiro LG, Filho, Callander BA, Harris N (1996) Climate change 1995. The science of climate change. IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Huey RB, Berrigan D (1996) Testing evolutionary hypothesis of acclimation. In: Johnston IA, Bennett AF (eds) Phenotypic and evolutionary adaptation to temperatures. Cambridge University Press, Cambridge, pp 205–237

    Chapter  Google Scholar 

  • Hulme M (ed) (1996) Climate change and southern Africa. Climatic Research Unit, University of East Anglia, Norwich

    Google Scholar 

  • Intergovernmental Panel on Climate Change (1996) Impacts, adaptations, and mitigation of climate change: scientific-technical analyses—contribution of working group II to the IPCC second assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2001a) Observed climate variability and change. In: Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, p 870

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2001b) Impacts, adaptation and vulnerability. Technical Summary, IPCC Publication. http://www.ipcc.ch/pub/wg2TARtechsum.pdf

  • Intergovernmental Panel on Climate Change (2001c) Climate change: impacts, adaptation and vulnerability, contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007a) Impacts, adaptation and vulnerability. In: Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007b) Climate change. The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007c) Climate change 2007: mitigation intergovernmental panel on climate change, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

    Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Johnsson F, Kjarstad J, Odenberger M (2012) The importance of CO2 capture and storage—a geopolitical discussion. Therm Sci 16(3):665–668

    Article  Google Scholar 

  • Keller M, Kaplan WA, Wofsy FC (1986) Emissions of nitrous oxide, methane and carbon dioxide from tropical soils. J Geophys Res 92(D2):1389–1395

    Google Scholar 

  • Khajuria A, Ravindranath NH (2012) Climate change in context of Indian agricultural sector. J Earth Sci Clim Change 3:110

    Google Scholar 

  • Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. Proc Natl Acad Sci 104(50):19697–19702

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Yalew AW (2012) Economic impacts of climate change on secondary activities: a literature review. Low Carbon Econ 3:39–48

    Google Scholar 

  • Kurukulasuriya P, Rosenthal S (2003) Climate change and agriculture: a review of impacts and adaptations. Climate Change Series, World Bank Paper No. 91

    Google Scholar 

  • Lagerspetz KYH (2006) What is thermal acclimation? J Therm Biol 31:332–336

    Article  Google Scholar 

  • Lau KM, Wu HT (2007) Detecting trends in tropical rainfall characteristics, 1979–2003. Int J Climatol 27:979–988

    Article  Google Scholar 

  • Lawlor DW, Mitchell RAC (1991) The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. Plant Cell Environ 14:807–818

    Article  Google Scholar 

  • Lehuger S, Gabrielle B, Larmanou E, Laville P, Cellier P, Loubet B (2007) Predicting the global warming potential of agro-ecosystems. Biogeosci Discuss 4:1059–1092

    Article  Google Scholar 

  • Linda W (2012) Political in Nature: The conflict-fuelling character of international climate policies. Hexagon series on human and environmental security and peace. p 223–241

    Google Scholar 

  • Lobell DB, Banziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials, Nature Climate Change, 1, 42–45

    Article  Google Scholar 

  • Makadho JM (1996) Potential effects of climate change on corn production in Zimbabwe. Clim Res 6:147–151

    Article  Google Scholar 

  • Maltais A (2012) Radially non-ideal climate politics and the obligation to vote green. Sweden

    Google Scholar 

  • Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  CAS  Google Scholar 

  • Marchetti C (1976) On geoengineering and the carbon dioxide problem. Springer 1(1):59–68

    Google Scholar 

  • Mendelsohn R, Nordhaus W (1999) The impact of global warming on agriculture: a Ricardian analysis: reply. Am Econ Rev 89(4):1046–1048

    Article  Google Scholar 

  • Milanova E (2012) Land use/cover change in Russia within the context of global challenges. Rom J Geogr 56(2):105–116

    Google Scholar 

  • Mirza Q, Monirul M, Warrick RA, Ericksen NJ (2003) The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Clim Chang 57(3):287–318

    Article  Google Scholar 

  • MoE (2009) Climate change vulnerabilities in agriculture in Pakistan. Ministry of Environment, Government of Pakistan, Annual Report. p 1–6

    Google Scholar 

  • Mott KA (1990) Sensing of atmospheric CO2 by plants. Plant Cell Environ 13:731–737

    Article  CAS  Google Scholar 

  • Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134

    Article  Google Scholar 

  • Murdiyarso D (2000) Adaptation to climatic variability and change: Asian perspectives on agriculture and food security. Environ Monit Assess 61(1):123–131

    Article  CAS  Google Scholar 

  • NASA (National Aeronautics and Space Administration) (2011) A wealth of global warming datasets and images. http://www.giss.nasa.gov/. Accessed 1 Dec 2012

  • National Environmental Satellite Center (1970) SIRS and the improved marine weather forecast. Mar Weather Log 14(1):12–15

    Google Scholar 

  • Nie G (1995) Effects of Free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins. Plant Cell Environ 18:855–864

    Article  CAS  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly M, Running SW, Piper SC, Tucker CJ, Myneni R (2003) Climate driven increases in terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Newman JE (1980) Climate change impacts on the growing season of the North American Corn Belt. Biometeorology 7(2):128–142, Supplement to International Journal of Biometeorology, 24 (December, 1980)

    Google Scholar 

  • Parry ML, Canziani OF, Palutikoif JP, Van der Linden PJ, Hanson CE (2007) Climate change: impacts, adaptation, vulnerability. Contribution of working group II to third assessment report of Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1000

    Google Scholar 

  • Patz JA, Epstein PR, Burke TA, Balbus JM (1996) Global climate change and emerging infectious diseases. NCBI 275:217–223

    CAS  Google Scholar 

  • Platz JA, Gibbs HK, Jonathan FA, Krik SR, Rogers JV (2007) Climate change and global health: quantifying a growing ethical crisis. Ecohealth J Consortium Adap Mitig Clim Change

    Google Scholar 

  • Le QuĂ©rĂ© C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlstrom A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Zeng N (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185. doi:10.5194/essd-5-165-2013

    Article  Google Scholar 

  • Randerson JT (2013) Climate science: global warming and tropical carbon. Nature 494:219–220

    Article  Google Scholar 

  • Reynolds MP (2010) Climate change and crop production. Forest stewardship council. CPI Antony Rowe, Chippenham

    Book  Google Scholar 

  • Riebeek H (2010) Global warming. http://earthobservatory.gov.nasa/Features/GlobalWarming/

    Google Scholar 

  • Rogelj J, McCollum DL, Riesenger A, Riahi K, Meinshausen M (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83

    Article  PubMed  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature 2:248–253

    Google Scholar 

  • Rosenberg RJ, Blad BL, Verma SB (1983) The biological environment. Wiley, New York

    Google Scholar 

  • Rosenzweig C (1985) Potential CO2-induced effects on North American wheat producing regions. Clim Chang 7:367–389

    Article  Google Scholar 

  • Rosenzweig C, Hillel D (1995) Climate change and the global harvest: potential impacts on the greenhouse effect on agriculture. Oxford University Press, Oxford

    Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–137

    Article  Google Scholar 

  • Rosenzweig C, Parry ML, Fischer G, Frohberg K (1993) Climate change and world food supply. Research Report 3. University of Oxford, Oxford

    Google Scholar 

  • Rosenzweig CE, Tubiello F, Goldberg R, Mills E, Bloomfield J (2002) Increased crop damage in the U.S. from excess precipitation under climate change. Glob Environ Change A 12:197–202. doi:10.1016/S0959-3780(02)00008-0

    Article  Google Scholar 

  • Rowland FS (1989) Chlorofluorocarbons and the depletion of atmospheric ozone. Jstor 77(1):36–45

    Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynth Res 39:351–368

    Article  CAS  Google Scholar 

  • Schmidhuber J, Tubiello NF (2007) Global food security under climate change. PNAS 104(50):19703–19708

    Article  PubMed  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Michigan: A Wiley-Intersciencie publications.

    Google Scholar 

  • Seshu DV, Cady FB (1984) Response of rice to solar radiation and temperature estimated from international yield trials. Crop Sci 24:649–654

    Article  Google Scholar 

  • Shakoor U, Saboor A, Ali I, Mohsin AQ (2011) Impact of climate change on agriculture: empirical evidence from arid region. Pak J Agric Sci 48(4):327–333

    Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54

    Article  PubMed  CAS  Google Scholar 

  • Sitch S, Piao S, Ciais P (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Chang Biol 10 (7):2117–32

    Google Scholar 

  • Sithole SZ (1990) Status and control of the Stem Borer, Chilopartellus Swinhoe (Lepidoptera:Pyralidae) in Southern Africa. Int J Trop Sci 11:479–488

    Article  Google Scholar 

  • Sivakumar MVK (1992) Climate change and implications for agriculture in Niger. Clim Chang 20:297–312

    Article  Google Scholar 

  • Smith RC, Ainley D, Baker K, Domack E, Emslie S, Fraser B, Kennett J, Leventer, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. Bioscience 49(5):393–404

    Article  Google Scholar 

  • Streck NA (2005) Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development and yield. Cienc. Rural 35(3) http://dx.doi.org/10.1590/S0103-84782005000300041

  • Sugde A, Smith J, Pennisi E (2008) The future of forests. Science 30:1442

    Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. The Benjamin/Cummings, New York, p 59

    Google Scholar 

  • Taylor KE, Stoufer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull. Amer. Meteor. Soc., 93, 485–498

    Google Scholar 

  • UNDP Human Development Report (2007/2008) Fighting climate change: human solidarity in a divided world. United Nations Development Programme, New York, Palgrave

    Google Scholar 

  • United Nations Population Division Department of Economic and Social Affairs (2009) World population prospects: the 2008 revision. http://esa.un.org/unpp

  • USGCRP (2009) Global climate change impacts in the United States. In: Karl TR, Melillo JM, Peterson TC (eds) United States global change research program. Cambridge University Press, New York, NY

    Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75(7):1861–1876

    Article  Google Scholar 

  • Vitousek PM, Walker LR (1993) Agriculture, the global nitrogen cycle and trace gas flux. In: The biogeochemistry of global change; radiative trace gases. p 193–208

    Google Scholar 

  • Vizcara N (2013, March 25) Media Advisory: Arctic sea ice reaches maximum extent. http://nsidc.org/, http://nsidc.org/news/press/201303_MaximumPR.html. Accessed March 2013

  • Vu JC, Allen LH, Boote KJ, Bowes G (1997) Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Environ 20:68–76

    Article  CAS  Google Scholar 

  • Wallington TJ, Srinivasan J, Nielsen OJ, Highwood EJ, Wallington TJ (2004) Green house and global warming. In Environmental and ecological Chemistry. Oxford, UK: Eolss Publisher

    Google Scholar 

  • Weart SR (2003) The discovery of global warming. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Weart S (2007) The history of climate change science. http://www.livescience.com/1292-history-climate-change-science.html. Accessed 2013

  • Webb P, Coates J, Frongolio EA, Rogers BL, Swindale A, Bilinsky P (2006) Measuring household food insecurity. Why it’s so important and yet so difficult to do so. J Nut 136:1404–1408

    Google Scholar 

  • Wittner SH (1967) Carbon dioxide and its role in plant growth. In: Proceeding of the 17th international horticulture congress, vol 3. p 311–322

    Google Scholar 

  • Wong SC et al (1979) Stomatal conductance correlates with photosynthesis capacity. Nature 282:424–426

    Article  Google Scholar 

  • World Bank (2010) World development report 2010. The World Bank, Washington, DC

    Google Scholar 

  • Yates DN, Strzepek KM (1998) Assessment of integrated climate change impacts on the agricultural economy of Egypt. Clim Chang 38:261–287

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul Kazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rehman, R., Hamdani, A., Naseem, A., Ashraf, M., Kazi, A.G. (2014). Scenario of Climate Changes in the Context of Agriculture. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_8

Download citation

Publish with us

Policies and ethics