Skip to main content

Effects of Heat Stress on Growth and Crop Yield of Wheat (Triticum aestivum)

  • Chapter
  • First Online:
Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment

Abstract

Wheat is an important staple crop of tropical countries, and its productivity largely regulates the economy of the country. At the same time, high temperature is one of the major abiotic stresses in tropical countries like India that has adverse impact on development, growth and overall yield of wheat. At some particular stage of life cycle of wheat, even a little increase or rise in temperature can lead to a complete loss of crop yield. High temperature differentially affects various metabolic processes including the stability of various proteins and membranes and the effectiveness of enzymatic reactions in the cell via denaturation, resulting in metabolic imbalance. Heat stress-induced membrane and protein damage can result in increased reactive oxygen species and thus oxidative stress. High-temperature stress leads to decrease in photosynthetic rates by affecting photosystem II and Rubisco activity and hence influencing the yield. Effects of high temperature on various metabolic reactions with particular emphasis on photosynthetic processes have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allakhverdiev SI, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    CAS  PubMed  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    CAS  PubMed  Google Scholar 

  • Altenbach S, DuPont B, Kothari FM, Chan KM, Johnson R, Lieu EL (2003) Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J Cereal Sci 37:9–20

    Google Scholar 

  • Al-Whaibi MH (2012) Plant heat-shock proteins: a mini review. J King Saud Univ 23(2):139–150. doi:10.1016/j.jksus.2010.06.022

    Google Scholar 

  • Andersson JM, Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci U S A 80:745–749

    Google Scholar 

  • Andrews TJ (1996) The bait in the Rubisco mousetrap. Nat Struct Biol 3:3–7

    CAS  PubMed  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Batts GR, Ellis RH, Morison JIL, Nkemka PN, Gregory PJ, Hadley P (1998) Yield and partitioning of crops of contrasting cultivars of winter wheat in response to CO2 and temperature in field studies using temperature gradient tunnels. J Agric Sci 130:17–27

    Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Björkman O, Badger MR, Armong PA (1980) Response and adaptation of photosynthesis to high temperatures. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 233–249

    Google Scholar 

  • Black MT, Brearley TH, Horton P (1986) Heterogeneity in chloroplast photosystem II. Photosynth Res 89:193–207

    Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83

    Google Scholar 

  • Bos HJ, Tijani-Eniola T, Struik PC (2000) Morphological analysis of leaf growth of maize: responses to temperature and light intensity. Neth J Agric Sci 48:181–198

    Google Scholar 

  • Bricker TM, Burnap RL (2005) The extrinsic proteins of photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone, oxidoreductase. Advances in photosynthesis and respiration. Springer, Dordrecht, The Netherlands, pp 95–120

    Google Scholar 

  • Bukhov NG, Mohanty P (1999) Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishers, New Delhi, pp 617–648

    Google Scholar 

  • Burke JJ (2001) Identification of genetic diversity and maturation in higher plant acquired thermotolerance. Physiol Plant 112:167–170

    CAS  Google Scholar 

  • Bussotti F, Desotgiu R, Cascio C, Strasser RJ, Gerosa G, Marzuoli R (2007) Photosynthesis responses to ozone in young tress of three species with different sensitivities in a 2 year open top chamber experiment (Curno, Italy). Plant Physiol 130:122–135

    CAS  Google Scholar 

  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transients as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta 1015:180–188

    CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931. doi:10.1111/j.1365-3040.2012.02525.x

    CAS  PubMed  Google Scholar 

  • Chen LS, Cheng L (2009) Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh) leaves than in fruit peel. Photosynthetica 47:112–120

    CAS  Google Scholar 

  • Chen WR, Zheng JS, Li YQ, Guo WD (2012) Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ J Plant Physiol 59:732–740

    CAS  Google Scholar 

  • Christen D, SchÅ‘nmanna S, Jermini M, Strasser RJ, Defago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514

    CAS  Google Scholar 

  • Claassen MM, Shaw RH (1970) Water deficit effects on corn. II. Grain components. Agron J 62:652–655

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci U S A 97:13430–13435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Depège N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    PubMed  Google Scholar 

  • Efeoglu B, Terzioglu S (2009) Photosynthetic responses of two wheat varieties to high temperature. EurAsia J Biosci 3:97–106

    Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186:52–58

    CAS  Google Scholar 

  • Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Doring P, Hirt H (2013) Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J 1:e59. doi:10.7717/peerj.59

    PubMed  Google Scholar 

  • Falcone DL, Ogas JP, Somerville CR (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol 17:4–17

    Google Scholar 

  • Feder ME (2006) Integrative biology of stress: molecular actors, the ecological theatre, and the evolutionary play. In: International symposium on environmental factors, cellular stress and evolution, Varanasi, India, 13–15 Oct, p 21

    Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Force L, Critchley C, van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33

    CAS  PubMed  Google Scholar 

  • Gounaris K, Brain ARR, Quinn PJ, Williams WP (1983) Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett 153:47–52

    CAS  Google Scholar 

  • Graan T, Ort DR (1986) Detection of oxygen-evolving photosystem II centres inactive in plastoquinone reduction. Biochim Biophys Acta 852:320–330

    CAS  Google Scholar 

  • Guenther JE, Nemson JA, Melis A (1988) Photosystem stoichiometry and chlorophyll antenna size in Dunaliella salina (green algae). Biochim Biophys Acta 934:108–117

    CAS  Google Scholar 

  • Guissé B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Arch Sci Geneva 48:147–160

    Google Scholar 

  • Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169–1183

    CAS  Google Scholar 

  • Hammer MF, Markwell J, Sarath G (1997) Purification of a protein phosphatase from chloroplast stroma capable of dephosphorylating the light-harvesting complex-II. Plant Physiol 113:227–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansson M, Vener AV (2003) Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol Cell Proteomics 2:550–559

    CAS  PubMed  Google Scholar 

  • Harrison MA, Allen JF (1991) Light-dependent phosphorylation of photosystem II polypeptides maintains electron transport at high light intensity: separation from effects of phosphorylation of LHC-II. Biochim Biophys Acta 1058:289–296

    CAS  Google Scholar 

  • Haucke V, Di Paolo G (2007) Lipids and lipid modifications in the regulation of membrane traffic. Curr Opin Cell Biol 19:426–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Havaux M, Lorrain L, Leblanc RM (1989) In vivo measurement of spectroscopic and photochemical properties of intact leaves using the ‘mirage effect’. FEBS Lett 250:395–399

    CAS  Google Scholar 

  • Heckman NL, Horst GL, Gausson RE, Tavener BT (2002) Trinexapac-ethyl influence on cell membrane thermostability of Kentucky bluegrass leaf tissue. Sci Hortic 92:83–186

    Google Scholar 

  • Hennessy KJ (1994) Climate change impact on wheat. In: Coombs B (ed) Australian grains. Morescope Publications, Melbourne, pp 213–219

    Google Scholar 

  • Hsu BD, Lee JY (1991) A study on the fluorescence induction curve of the DCMU-poisoned chloroplast. Biochim Biophys Acta 1056:285–292

    CAS  Google Scholar 

  • Irmak S, Naeem HA, Lookhart GL, MacRitchie F (2008) Effect of heat stress on wheat proteins during kernel development in wheat near-isogenic lines differing at Glu-D1. J Cereal Sci 48:513–516

    CAS  Google Scholar 

  • Joliot A, Joliot MP (1964) Etude cinetique de la reaction photochimique liberant l oxygeneau cours de la photosynthese. C R Acad Sci Paris 258:4265–4622

    Google Scholar 

  • Jones PD, New M, Parker DE, Mortin S, Rigor IG (1999) Surface area temperature and its change over the past 150 years. Rev Geophys 37:173–199

    Google Scholar 

  • Khurana N, Chauhan H, Khurana P (2013) Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis plants. PLoS One 8(1):e54418. doi:10.1371/journal.pone.0054418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiol Plant 101:265–277

    CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Labuschange MT, Elago O, Koen E (2009) The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. J Cereal Sci 49:184–189

    Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavergne J (1982) Two types of primary acceptors in chloroplasts photosystem II. Photobiochem Photobiophys 3:257–285

    CAS  Google Scholar 

  • Lavergne J, Briantais JM (1996) Photosystem II heterogeneity. In: Ort RD, Yocum CF (eds) Oxygeneic photosynthesis: the light reactions. Kluwer, Dordrecht, The Netherlands, pp 265–287

    Google Scholar 

  • Law R, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazár D, Pospisil P (1999) Mathematical simulation of chlorophyll a fluorescence rise measured with 3-[3′,4′-dichlorophenyl]-1,1-dimethylurea-treated barley leaves at room and high temperature. Eur Biophys J 28:468–477

    PubMed  Google Scholar 

  • Lazár D, Iliek P, Naus I (1997) An appearance of K peak in fluorescence induction depends on the acclimation of barley leaves to higher temperature. J Lumin 72:595–596

    Google Scholar 

  • Lazár D, Tomek P, Ilík P, Naus J (2001) Determination of the antenna heterogeneity of PS II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosynth Res 68:247–257

    PubMed  Google Scholar 

  • Majoul-Haddad T, Bancel E, Martre P, Triboi E, Branlard G (2013) Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. J Cereal Sci 57(3):486–495. doi:10.1016/j.jcs.2013.02.003

    CAS  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011a) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    CAS  PubMed  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011b) Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6

    CAS  PubMed  Google Scholar 

  • Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperature during flowering period among japonica rice varieties. Plant Prod Sci 4:90–93

    Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010a) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    CAS  PubMed  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010b) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    CAS  PubMed  Google Scholar 

  • Melis A (1985) Functional properties of PS IIβ in spinach chloroplasts. Biochim Biophys Acta 808:334–342

    CAS  Google Scholar 

  • Melis A, Duysens LMN (1979) Biphasic energy conversion kinetics and absorbance difference spectra of photosystem II of chloroplasts. Evidence for two different photosystem II reaction centres. Photochem Photobiol 29:373–382

    CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of the photochemical centres in system II of chloroplasts. Photochem Photobiol 23:343–350

    CAS  PubMed  Google Scholar 

  • Midmore DJ, Cartwright PM, Fischer RA (1984) Wheat in tropical environments II. Crop growth and grain yield. Field Crop Res 8:207–227

    Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125

    CAS  PubMed  Google Scholar 

  • Modarresi M, Mohammadi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Res Commun 38:23–31

    Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci U S A 92(14):6219–6223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto RI (1993) Cells in stress: the transcriptional activation of heat shock genes. Science 259:1409–1410

    CAS  PubMed  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    CAS  PubMed  Google Scholar 

  • Nicolas ME, Gleadow RM, Dalling MJ (1985) Effect of post-anthesis drought on cell-division and starch accumulation in developing wheat grains. Ann Bot 55:433–444

    Google Scholar 

  • Pick T, Jaskiewicz M, Peterhänsel C, Conrath U (2012) Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis. Plant Physiol 159:52–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter JR, Gawith M (1999) Temperature and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Google Scholar 

  • Portis AR Jr (2003) Rubisco activase: Rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    CAS  PubMed  Google Scholar 

  • Pospíšil P, Tyystjärvi E (1999) Molecular mechanism of high temperature-induced inhibition of acceptor side of photosystem II. Photosynth Res 62:55–66

    Google Scholar 

  • Pospisil P, Skotnica J, Naus J (1998) Low and high temperature dependence of minimum Fo and maximum Fm chlorophyll fluorescence in vivo. Biochim Biophys Acta 1363:95–99

    CAS  PubMed  Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ (1999) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain sorghum (Sorghum bicolor (L.) Moench) are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Advances in agricultural systems modeling series 1, Madison, WI, pp 301–355

    Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432(2):203–207. doi:10.1016/j.bbrc.2013.01.104

    CAS  PubMed  Google Scholar 

  • Quinn PG, Williams WP (1985) Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 1–47

    Google Scholar 

  • Rakszegi M, Láng L, Bedi Z (2006) Importance of starch properties in quality oriented wheat breeding. Cereal Res Commun 34:637–640

    Google Scholar 

  • Rokka A, Aro EM, Herrmann RG, Andersson B, Vener AV (2000) Dephosphorylation of photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol 123:1525–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rokka A, Zhang L, Aro EM (2001) Rubisco activase: an enzyme with a temperature-dependent dual function? Plant J 25:463–471

    CAS  PubMed  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Google Scholar 

  • Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot 48:623–633

    Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004a) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004b) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    CAS  PubMed  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schansker G, Strasser RJ (2005) Quantification of non-QB-reducing centres in leaves using a far-red pre-illumination. Photosynth Res 84:145–151

    CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819(2):104–119

    CAS  PubMed  Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes, Austin, TX, pp 81–98

    Google Scholar 

  • Schreiber U, Gademan R, Ralph PJ, Larkum AWD (1997) Assessment of photosynthetic performance of prochloron in Lissoclinum patellain hospite by chlorophyll fluorescence measurement. Plant Cell Physiol 38:945–951

    CAS  Google Scholar 

  • Sharkey TD (2000) Some like it hot. Science 287:435–437

    CAS  PubMed  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    CAS  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722

    CAS  PubMed  Google Scholar 

  • Silva-Correia J, Azevedo H, Lino-Neto T, Tavares RM (2012) Understanding heat stress tolerance of suspended cells in the model plant Populus euphratica. In: Papers in scientific journals, pp 1–5

    Google Scholar 

  • Sinclair TR (1994) Limits to crop yield. In: Boote KJ et al (eds) Physiology and determination of yield. ASA, Madison, WI, pp 509–532

    Google Scholar 

  • Sinclair J, Spence SM (1988) The analysis of fluorescence induction transients from dicholoro-phenyldimethylurea-poisoned chloroplasts. Biochim Biophys Acta 935:184–194

    CAS  Google Scholar 

  • Slafer GA, Rawson HM (1995) Base and optimum temperatures vary with genotype and stage of development in wheat. Plant Cell Environ 18:671–679

    Google Scholar 

  • Snider JL, Oosterhuis DM, Kawakami EM (2010) Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiol Plant 138:268–277

    CAS  PubMed  Google Scholar 

  • Snyders S, Kohorn BD (1999) TAKs, thylakoid membrane protein kinases associated with energy transduction. J Biol Chem 274:9137–9140

    CAS  PubMed  Google Scholar 

  • Snyders S, Kohorn BD (2001) Disruption of thylakoid-associated kinase 1 leads to alteration of light harvesting in Arabidopsis. J Biol Chem 276:32169–32176

    CAS  PubMed  Google Scholar 

  • Sohn SO, Back K (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plant 51:340–342

    CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: interactions, associations and the possibilities of a better enzyme. Annu Rev Plant Biol 53:449–475

    CAS  PubMed  Google Scholar 

  • Srivastava A, Strasser RJ (1996) Stress and stress management of land plants during a regular day. J Plant Physiol 148:445–455

    CAS  Google Scholar 

  • Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106

    CAS  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    CAS  PubMed  Google Scholar 

  • Stone PJ, Nicholas ME (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Aust J Plant Physiol 21:887–900

    Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M (1998) Activity and heterogeneity of PS II probed in vivo by the chlorophyll a fluorescence rise O-[K]-J-I-P. In: Garab G (ed) Photosynthesis: mechanisms and Effects. Kluwer Academic, Dordrecht, The Netherlands, pp 4321–4324

    Google Scholar 

  • Strasser RJ, Eggenberg P, Strasser BJ (1996) How to work without stress but with fluorescence. Bull Soc R Sci Liege 65:330–349

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 443–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Advances in photosynthesis and respiration: chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, The Netherlands, pp 321–362

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Dangre D, Rai M (2007) Biophysical phenomics reveals functional building blocks of plants system biology: a case study for the evaluation of the impact of mycorrhization with P. indica. In: Varma A, Oelmuller R (eds) Soil biology, advanced techniques in soil microbiology. Springer, Berlin, pp 341–391

    Google Scholar 

  • Su K, Bremer DJ, Jeannotte R, Welti R, Yang C (2009) Membrane lipid composition and heat tolerance in cool-season Turf grasses, including a Hybrid Bluegrass. J Amer Soc Hort Sci 134(5):511–520

    Google Scholar 

  • Sundby C, Melis A, Mäenpää P, Andersson B (1986) Temperature-dependent changes in the antenna size of photosystem II. Reversible conversion of photosystem IIα to photosystem IIβ. Biochim Biophys Acta 851:475–483

    CAS  Google Scholar 

  • Süss KH, Yordanov I (1986) Biosynthetic cause of vivo acquired thermotolerance of photosynthetic light reactions and metabolic responses of chloroplasts to heat stress. Plant Physiol 81:192–199

    PubMed Central  PubMed  Google Scholar 

  • Suzuki N, Miller G, Sejima H, Harper J, Mittler R (2013) Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. J Exp Bot 64(1):253–263. doi:10.1093/jxb/ers335

    CAS  PubMed  Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomar RS, Mathur S, Allakhverdiev SI, Jajoo A (2012) Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J Bioenerg Biomembr 44:411–419

    Google Scholar 

  • Tripp J, Mishra SK, Scharf KD (2009) Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell Environ 32:123–133

    CAS  PubMed  Google Scholar 

  • Tsimilli-Michael M, Kruger GHJ, Strasser RJ (1996) About the perpetual state changes in plants approaching harmony with their environment. Arch Sci Geneva 49:173–203

    Google Scholar 

  • Tyystjarvi E, Aro EM (1990) Temperature-dependent changes in PS II heterogeneity support a cycle of PS II during photoinhibition. Photosynth Res 26:109–117

    CAS  Google Scholar 

  • Ugarte C, Calderini DF, Slafer GA (2007) Grain weight and grain number responsiveness to preanthesis temperature in wheat, barley and triticale. Field Crop Res 100:240–248

    Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ã…. Nature 475:55–60

    Google Scholar 

  • Vainonen JP, Jaspers P, Wrzaczek M, Lamminmaki A, Reddy RA et al (2012) RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana. Biochem J 442:573–581. doi:10.1042/BJ20111739

    CAS  PubMed  Google Scholar 

  • Veisz O, Bencze SZ, Balla K, Vida GY (2008) Change in water stress resistance of cereals due to atmospheric CO2 enrichment. Cereal Res Commun 36:1095–1098

    CAS  Google Scholar 

  • Vener AV, Rokka A, Fulgosi H, Andersson B, Herrmann RG (1999) A cyclophilin-regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. Biochemistry 38:14955–14965

    CAS  PubMed  Google Scholar 

  • Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Phys 42:579–620

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wahid A, Farooq M, Hussain I, Rasheed R, Galani S (2012) Responses and management of heat stress in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York

    Google Scholar 

  • Wang B (1988) Biological free radicals and membrane damage of plant. Plant Physiol Commun 2:12–16

    Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    CAS  PubMed  Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53(2):237–242

    CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesida H, Zhou H, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. J Biol Chem 277:31994–32002

    CAS  PubMed  Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PV (2000) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82:159–167

    Google Scholar 

  • Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

    Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59

    CAS  Google Scholar 

  • Yan SH, Yin YP, Li WY, Li Y, Liang TB, Wu YH, Geng QH, Wang ZL (2008) Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecol Sin 28:6138–6147

    Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Jajoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathur, S., Jajoo, A. (2014). Effects of Heat Stress on Growth and Crop Yield of Wheat (Triticum aestivum). In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_8

Download citation

Publish with us

Policies and ethics