Skip to main content

Bioinformatics Approaches to Deciphering Alien Gene Transfer: A Comprehensive Analysis

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1
  • 1429 Accesses

Abstract

A large number of bioinformatics methods have been developed in recent years for detecting gene transfers between distantly related or unrelated organisms. These have been mainly classified as parametric and phylogenetic methods. While the former methods have been frequently invoked for detecting recent gene transfers, detection of ancient gene transfers have relied upon phylogenetic methods. Numerous evidences emerging from the applications of these methods have firmly established interspecies gene transfer as a significant force-driving prokaryotic genome evolution. The focus is now shifting to assessing the extent and impact of this mechanism in eukaryotic genome evolution. The methods developed for detecting alien genes in unicellular organisms have been adapted for identifying and cataloging instances of gene transfers in multicellular organisms. A significant interest is in cataloging gene transfers in plants which have more leaky barriers to gene transfer than highly evolved animals. We review the advances in this field with a focus on alien gene transfer in plants and the bioinformatics methods frequently used to detect such transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EN III (1972) Consensus techniques and the comparison of taxonomic trees. Syst Biol 21:390–397

    Google Scholar 

  • Alexeyenko A, Tamas I, Liu G, Sonnhammer EL (2006) Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics 22:e9–e15

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    PubMed  CAS  Google Scholar 

  • Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet 14:442–444

    PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    PubMed  CAS  Google Scholar 

  • Arvey AJ, Azad RK, Raval A, Lawrence JG (2009) Detection of genomic islands via segmental genome heterogeneity. Nucleic Acids Res 37:5255–5266

    PubMed  CAS  Google Scholar 

  • Azad RK, Borodovsky M (2004) Effects of choice of DNA sequence model structure on gene identification accuracy. Bioinformatics 20:993–1005

    PubMed  CAS  Google Scholar 

  • Azad RK, Lawrence JG (2005) Use of artificial genomes in assessing methods for atypical gene detection. PLoS Comput Biol 1:e56

    PubMed  Google Scholar 

  • Azad RK, Lawrence JG (2007) Detecting laterally transferred genes: use of entropic clustering methods and genome position. Nucleic Acids Res 35:4629–4639

    PubMed  CAS  Google Scholar 

  • Azad RK, Lawrence JG (2011) Towards more robust methods of alien gene detection. Nucleic Acids Res 39:e56

    PubMed  CAS  Google Scholar 

  • Azad RK, Lawrence JG (2012) Detecting laterally transferred genes. Methods Mol Biol 855:281–308

    PubMed  CAS  Google Scholar 

  • Azad RK, Li J (2013) Interpreting genomic data via entropic dissection. Nucleic Acids Res 41:e23

    PubMed  CAS  Google Scholar 

  • Beiko RG, Charlebois RL (2007) A simulation test bed for hypotheses of genome evolution. Bioinformatics 23:825–831

    PubMed  CAS  Google Scholar 

  • Beiko RG, Hamilton N (2006) Phylogenetic identification of lateral genetic transfer events. BMC Evol Biol 6:15

    PubMed  Google Scholar 

  • Beiko RG, Ragan MA (2008) Detecting lateral genetic transfer : a phylogenetic approach. Methods Mol Biol 452:457–469

    PubMed  CAS  Google Scholar 

  • Beiko RG, Ragan MA (2009) Untangling hybrid phylogenetic signals: horizontal gene transfer and artifacts of phylogenetic reconstruction. Methods Mol Biol 532:241–256

    PubMed  CAS  Google Scholar 

  • Bejarano ER, Khashoggi A, Witty M, Lichtenstein C (1996) Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci U S A 93:759–764

    PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds OR (2005) Supertree construction in the genomic age. Methods Enzymol 395:745–757

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds OR, Sanderson MJ (2001) Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Syst Biol 50:565–579

    PubMed  CAS  Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    PubMed  CAS  Google Scholar 

  • Brown JR, Masuchi Y, Robb FT, Doolittle WF (1994) Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 38:566–576

    PubMed  CAS  Google Scholar 

  • Chatterjee R, Chaudhuri K, Chaudhuri P (2008) On detection and assessment of statistical significance of Genomic Islands. BMC Genomics 9:150

    PubMed  Google Scholar 

  • Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368

    PubMed  CAS  Google Scholar 

  • Christin PA, Edwards EJ, Besnard G, Boxall SF, Gregory R, Kellogg EA et al (2012) Adaptive evolution of C(4) photosynthesis through recurrent lateral gene transfer. Curr Biol 22:445–449

    PubMed  CAS  Google Scholar 

  • Day WH, McMorris FR (1992) Consensus sequences based on plurality rule. Bull Math Biol 54:1057–1068

    PubMed  CAS  Google Scholar 

  • Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B (1999) Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol Biol Evol 16:1391–1399

    PubMed  CAS  Google Scholar 

  • Diao X, Freeling M, Lisch D (2006) Horizontal transfer of a plant transposon. PLoS Biol 4:e5

    PubMed  Google Scholar 

  • Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    PubMed  CAS  Google Scholar 

  • Dong J, Fernandez-Baca D, McMorris FR, Powers RC (2010) Majority-rule (+) consensus trees. Math Biosci 228:10–15

    PubMed  Google Scholar 

  • Dufraigne C, Fertil B, Lespinats S, Giron A, Deschavanne P (2005) Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Res 33:e6

    PubMed  Google Scholar 

  • Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK, p 350

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    PubMed  CAS  Google Scholar 

  • Efron B, Halloran E, Holmes S (1996) Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A 93:13429–13434

    PubMed  CAS  Google Scholar 

  • Eulenstein O, Chen D, Burleigh JG, Fernandez-Baca D, Sanderson MJ (2004) Performance of flip supertree construction with a heuristic algorithm. Syst Biol 53:299–308

    PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP: Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10:1719–1725

    PubMed  CAS  Google Scholar 

  • Gelman A, Rubin DB (1996) Markov chain Monte Carlo methods in biostatistics. Stat Methods Med Res 5:339–355

    PubMed  CAS  Google Scholar 

  • Gogarten JP (1995) The early evolution of cellular life. Trends Ecol Evol 10:147–151

    PubMed  CAS  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    PubMed  CAS  Google Scholar 

  • Gophna U, Charlebois RL, Doolittle WF (2006) Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends Microbiol 14:64–69

    PubMed  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    PubMed  CAS  Google Scholar 

  • Hayes WS, Borodovsky M (1998) How to interpret an anonymous bacterial genome: machine learning approach to gene identification. Genome Res 8:1154–1171

    PubMed  CAS  Google Scholar 

  • Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes–the tree of life becomes a net of life. Biosystems 31:111–119

    PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    PubMed  CAS  Google Scholar 

  • Karlin S (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1:598–610

    PubMed  CAS  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    PubMed  CAS  Google Scholar 

  • Kaundal R, Raghava GPS (2009) RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information. Proteomics 9:2324–2342

    PubMed  CAS  Google Scholar 

  • Kaundal R, Kapoor AS, Raghava GPS (2006) Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinforma 7:485

    Google Scholar 

  • Kaundal R, Saini R, Zhao PX (2010) Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154:36–54

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179

    PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    PubMed  CAS  Google Scholar 

  • Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254

    PubMed  CAS  Google Scholar 

  • Kurland CG (2005) What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27:741–747

    PubMed  CAS  Google Scholar 

  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci U S A 100:9658–9662

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  CAS  Google Scholar 

  • Lapierre P, Lasek-Nesselquist E, Gogarten JP (2012) The impact of HGT on phylogenomic reconstruction methods. Brief Bioinform (in press)

    Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95:9413–9417

    PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (2002) Reconciling the many faces of gene transfer. Trends Microbiol 10:1–4

    PubMed  CAS  Google Scholar 

  • Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441

    PubMed  CAS  Google Scholar 

  • Médigue C, Rouxel T, Vigier P, Hénaut A, Danchin A (1991) Evidence of horizontal gene transfer in Escherichia coli speciation. J Mol Biol 222:851–856

    PubMed  Google Scholar 

  • Nakamura A, Schmitt M, Schmitt N, Simon HU (2005) Inner Product Spaces for Bayesian Networks. J Machine Learning Res 6:1383–1403

    Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    PubMed  CAS  Google Scholar 

  • Nesbo CL, Boucher Y, Doolittle WF (2001) Defining the core of nontransferable prokaryotic genes: the euryarchaeal core. J Mol Evol 53:340–350

    PubMed  CAS  Google Scholar 

  • Nguyen N, Mirarab S, Warnow T (2012) MRL and SuperFine + MRL: new supertree methods. Algorithms Mol Biol 7:3

    PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    PubMed  CAS  Google Scholar 

  • Pevsner J (2003) Bioinformatics and functional genomics. John Wiley & Sons, Hoboken, New Jerssey

    Google Scholar 

  • Pible O, Imbert G, Pellequer JL (2005) INTERALIGN: interactive alignment editor for distantly related protein sequences. Bioinformatics 21:3166–3167

    PubMed  CAS  Google Scholar 

  • Poptsova M (2009) Testing phylogenetic methods to identify horizontal gene transfer. Methods Mol Biol 532:227–240

    PubMed  CAS  Google Scholar 

  • Ragan MA (2001) On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett 201:187–191

    PubMed  CAS  Google Scholar 

  • Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    PubMed  CAS  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    PubMed  CAS  Google Scholar 

  • Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53:131–147

    Google Scholar 

  • Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548

    PubMed  CAS  Google Scholar 

  • Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906

    PubMed  CAS  Google Scholar 

  • Sanchez C (2011) Horizontal gene transfer: eukaryotes under a new light. Nat Rev Microbiol 9:228

    PubMed  CAS  Google Scholar 

  • Sandberg R, Winberg G, Branden CI, Kaske A, Ernberg I, Coster J (2001) Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. Genome Res 11:1404–1409

    PubMed  CAS  Google Scholar 

  • Schmidt HA, von Haeseler A (2007) Maximum-likelihood analysis using TREE-PUZZLE. Curr Protoc Bioinformatics. Chapter 6:Unit 6 6

    Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Hallick RB (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32:803–810

    PubMed  CAS  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Simossis VA, Heringa J (2003) The PRALINE online server: optimising progressive multiple alignment on the web. Comput Biol Chem 27:511–519

    PubMed  CAS  Google Scholar 

  • Simossis VA, Heringa J (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 33:W289–W294

    PubMed  CAS  Google Scholar 

  • Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944

    PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    PubMed  CAS  Google Scholar 

  • Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci U S A 109:2434–2438

    PubMed  CAS  Google Scholar 

  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775–787

    PubMed  CAS  Google Scholar 

  • Swenson MS, Suri R, Linder CR, Warnow T (2012) SuperFine: fast and accurate supertree estimation. Syst Biol 61:214–227

    PubMed  Google Scholar 

  • Swofford D (1998) PAUP* 4.0 Beta version, phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Swofford D, Olsen GJO (1990) Phylogenetic reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates, Inc., Sunderland, Massachusetts, pp 411–501

    Google Scholar 

  • Syvanen M, Kado CI (1998) Horizontal Gene Transfer. Chapman & Hall, Lodon

    Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    PubMed  CAS  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. Chapter 2:Unit 2 3

    Google Scholar 

  • Tsirigos A, Rigoutsos I (2005a) A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res 33:922–933

    PubMed  CAS  Google Scholar 

  • Tsirigos A, Rigoutsos I (2005b) A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes. Nucleic Acids Res 33:3699–3707

    PubMed  CAS  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. J Mol Evol 41:563–572

    PubMed  CAS  Google Scholar 

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203

    PubMed  CAS  Google Scholar 

  • Vernikos GS, Parkhill J (2008) Resolving the structural features of genomic islands: a machine learning approach. Genome Res 18:331–342

    PubMed  CAS  Google Scholar 

  • Woese CR (1991) The use of ribosomal RNA in reconstructing evolutionary relationships among bacteria. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the Molecular Level. Sinauer Associates Inc., Sunderland, MA, pp 1–24

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    PubMed  CAS  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472–479

    PubMed  CAS  Google Scholar 

  • Woloszynska M, Bocer T, Mackiewicz P, Janska H (2004) A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus. Plant Mol Biol 56:811–820

    PubMed  CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci U S A 100:10824–10829

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by faculty start-up funds to R.K. from NIMFFAB, Department of Biochemistry & Molecular Biology, Oklahoma State University and similar start-up funds from the University of North Texas to R.K.A. The authors thank the anonymous referees for critically reviewing and help in improving the book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kaundal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Azad, R.K., Mishra, N., Ahmed, F., Kaundal, R. (2014). Bioinformatics Approaches to Deciphering Alien Gene Transfer: A Comprehensive Analysis. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_11

Download citation

Publish with us

Policies and ethics