Skip to main content

Alien Gene Transfer in Crop Plants: An Introduction

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Alien gene transfer in crop plants has led to tremendous improvement in various crop species. Wild species are rich resources of useful alien genes which are not available in the cultivated gene pool. These include genes for resistance to diseases and insect pests; for tolerance to drought, salinity, temperature extremities and other abiotic stresses as well as for quality traits. While most of the alien gene introgressions in crop plants have been achieved through vertical gene transfer, horizontal gene transfer through transgenesis, somatic hybridization and, most recently, intragenesis and cisgenesis has invoked tremendous interest of the scientific community globally. These techniques, lately aided by molecular markers and in situ hybridization, together have led to introgression of hundreds of genes of interest in cultivated background of crop species, thereby improving their genetic potential. This chapter provides an insight into importance and need of alien gene transfer, various methods to achieve it, alien gene detection and role of alien gene transfer in creating variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405

    PubMed  CAS  Google Scholar 

  • Altieri MA, Montecinos C (1993) Conserving crop genetic resources in Latin America through farmers’ participation. In: Christopher S, Potter DJ, Cohen JI (eds) Perspectives on biodiversity: case studies of genetic resource conservation and development. American Association for the Advancement of Science (AAAS), Washington, DC, pp 45–64

    Google Scholar 

  • Anderson E (1949) Introgressive hybridization. Wiley, New York, NY

    Google Scholar 

  • Anderson E (1961) The analysis of variation in cultivated plants with special reference to introgression. Euphytica 10:79–86

    Google Scholar 

  • Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci U S A 101: 7805–7808

    PubMed  CAS  Google Scholar 

  • Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261

    Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Bates GW, Hasenkampf CA (1985) Culture of plant somatic hybrids following electrical fusion. Theor Appl Genet 70:227–233

    Google Scholar 

  • Bauer M, Gaskell G (2002) Researching the public sphere of biotechnology. In: Gaskell G, Bauer M (eds) Biotechnology: the making of a global controversy. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal gene transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    PubMed  CAS  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gatian-Soils E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchors microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    PubMed  CAS  Google Scholar 

  • Blakeslee AF (1945) Removing some of the barriers to crossability in plants. Proc Am Philos Soc 89:561–574

    PubMed  CAS  Google Scholar 

  • Bock R (2009) The give and take of DNA: horizontal gene transfers in plants. Trends Plant Sci 15:11–22

    PubMed  Google Scholar 

  • Brown CR, Adiwilaga KD (1991) Use of rescue pollination to make a complex interspecific cross in potato. Am Potato J 68:813–820

    Google Scholar 

  • Carlsson J, Lagercrantz U, Sundstrorm J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J 49:452–462

    PubMed  CAS  Google Scholar 

  • Chaky JM, Specht JE, Cregan PB (2003) Advanced backcross QTL analysis. In: Proceedings of the plant and animal genome XII conference abstracts, San Diego, CA, USA, 10–14 January 2004, pp. 545

    Google Scholar 

  • Chaudhary HK (2008) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches in bread wheat: focus on north-west Himalayan regions. Adv Chrom Sci 3:67–69

    Google Scholar 

  • Chaudhary HK (2009) New frontiers in chromosome engineering: genetic upgradation of bread wheat for varied agroclimatic situations in north-west Himalayas. In: Proceeding of national seminar on designing crops for the changing climate, Ranchi, Jharkhand, India. 30–31 October, 2009, pp. 51–52

    Google Scholar 

  • Chaudhary HK, Chahota RK, Mukai Y, Jeberson MS, Kishore N, Kumar V (2009) Molecular cytogenetic mapping of the targeted rye chromatin introgressed bread wheat lines associated with drought tolerance and rust resistance suitable for rainfed regions of north-west Himalayas. In: Proceedings of national seminar on designing crops for the changing climate, Ranchi, Jharkhand, India, 30–31 October, 2009, pp. 84

    Google Scholar 

  • Chaudhary HK, Sood VK, Tayeng T, Kaila V, Sood A (2011) Molecular cytogenetics in physical mapping of genomes and alien introgressions. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, pp 131–146

    Google Scholar 

  • Concibido VC, Vallee BL, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Cuadrado A, Jouve N (1994) Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x Triticale. Chromosome Res 2:331–338

    PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. Murray, London

    Google Scholar 

  • Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from malpighiales. Science 305:676–678

    PubMed  CAS  Google Scholar 

  • Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc Roy Soc B Biol Sci 272:2237–2242

    CAS  Google Scholar 

  • Diao X et al (2006) Horizontal transfer of a plant transposon. PLoS Biol 4:e5

    PubMed  Google Scholar 

  • Donald CM, Hamblin J (1983) The convergent evolution of annual seed crops in agriculture. Adv Agron 36:97–143

    Google Scholar 

  • Ellstrand NC, Whitkus RW, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci U S A 93:5090–5093

    PubMed  CAS  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Google Scholar 

  • Fish N, Karp A, Jones MGK (1988) Production of somatic hybrids by electrofusion in Solanum. Theor Appl Genet 76:260–266

    Google Scholar 

  • Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    PubMed  Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Galasso I (2003) Distribution of highly repeated DNA sequences in species of the genus Lens Miller. Genome 46:1118–1124

    PubMed  CAS  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    PubMed  CAS  Google Scholar 

  • Gepts P, Papa R (2003) Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosafe Res 2:89–103

    Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci U S A 108:7657–7658

    PubMed  CAS  Google Scholar 

  • Göntér I, Szarka B, Lendvai Á, Molnár-Láng M, Mórocz S, Dudits D (2002) Problems and possibilities of wheat-maize somatic hybridization. Proc Hung Cong Plant Physiol 46:11–12

    Google Scholar 

  • Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236:48–54

    PubMed  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Google Scholar 

  • Hancock JF, Grumet R, Hokanson SC (1996) The opportunity for escape of engineered genes from transgenic crops. Horticult Sci 31:1080–1085

    Google Scholar 

  • Hanelt P (1997) Gene flow between crops and related taxa-some case studies. Bocconea 7:51–61

    Google Scholar 

  • Hansen LN (1998) Intertribal somatic hybridization between rapid cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica 104:173–179

    Google Scholar 

  • Hansen LN, Earle ED (1997) Somatic hybrids between Brassica oleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet 94:1078–1085

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Harrison RG (1990) Hybrid zones: windows on the evolutionary process. In: Futuyama DJ, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 7. Oxford University Press, Oxford, pp 69–128

    Google Scholar 

  • Hauser TP, Jorgensen RB et al (1998) Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81:436–443

    Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci U S A 96:5937–5943

    PubMed  CAS  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotech J 11:395–405. doi:10.1111/pbi.12055

    CAS  Google Scholar 

  • Hossain M, Imanishi S, Matsumoto A (1994) Production of somatic hybrids between tomato (Lycopersicon esculentum) and night shade (Solanum lycopersicoides) by electrofusion. Breed Sci 44:405–412

    Google Scholar 

  • Huang J, Rozell S et al (2003) Plant biotechnology in China. Science 295:674–676

    Google Scholar 

  • Iltis HH (1988) Serendipity in the exploration of diversity. In: Wilson EO (ed) Biodiversity. Natl. Acad. Press, Washington, DC, pp 98–105

    Google Scholar 

  • Jarvis DI, Hodgkin T (1998) Wild relatives and crop cultivars: conserving the connection. In: The proceedings of an international symposium on in situ conservation of plant genetic diversity, Zencirci N, Kaya Z, Anikster Y, Adams WT (eds), pp. 73–80, Central Research Institute for Field Crops, Ankara, Turkey

    Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and fermer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173

    Google Scholar 

  • Jauhar PP (1993) Alien gene transfer and genetic enrichment of bread wheat. In: Damania AB (ed) Biodiversity and wheat improvement. ICARDA-AWiley Sayce Publication, Aleppo, pp 103–119

    Google Scholar 

  • Jauhar PP, Chibbar RN (1999) Chromosome mediated and direct gene transfers in wheat. Genome 42:570–583

    CAS  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Jochemsen H (2000) Toetsen en begrenzen. Een ethische en politieke beoordeling van de moderne biotechnologie, Wetenschappelijke Studiecentra van RPF en GPV (ChristenUnie)

    Google Scholar 

  • Johnsborg O, Eldholm V, Harvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778

    PubMed  CAS  Google Scholar 

  • Johnsson AAT, Veilleux RE (2001) Somatic hybridization and applications in plant breeding. Plant Breed Rev 20:167–226

    Google Scholar 

  • Kao KN, Michayulk MR (1974) A method of high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367

    CAS  Google Scholar 

  • Khattak GSS, Wolny E, Saeed I (2007) Detection of ribosomal DNA sites in Chickpea ( Cicer arietinum L.) and Mungbean ( Vigna radiata (L). Wiltzek) by fl uorescence in situ hybridization. Pak J Bot 39:1511–1515

    Google Scholar 

  • Kirti PB, Mohapatra T, Khanna H, Prakash S, Chopra VL (1995) Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep 14:593–597

    CAS  Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1997) Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet 94:221–226

    Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Rep 17:362–367

    CAS  Google Scholar 

  • Knott DR, Dvorak J (1976) Alien germplasm as a source of resistance to diseases. Annu Rev Plant Physiol Plant Mol Biol 14:211–235

    Google Scholar 

  • Komeda N, Chaudhary HK, Suzuki G, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat x Imperata cylindricahybrids through fluorescence in situhybridization. Gen Genet Syst 82:241–248

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011a) Towards marker-assisted selection in pulses - a review. Plant Breed 130:297–313

    CAS  Google Scholar 

  • Kumar S, Mohammad I, Gupta S, Pratap A (2011b) Distant hybridization and alien gene introgression. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CAB International, Oxfordshire, pp 81–110

    Google Scholar 

  • Ladizinsky G, Pickersgill B, Yamamoto K (1988) Exploitation of wild relatives of the food legumes. In: Summerfield RJ (ed) World crops, cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 967–987

    Google Scholar 

  • Lassen J, Madsen KH, Sandøe P (2002) Ethics and genetic engineering – lessons to be learned from GM foods. Bioprocess Biosyst Eng 24:263–271

    CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the a-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523

    PubMed  CAS  Google Scholar 

  • Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneous in situhybridization of two differently fluorescent probes. Genome 34:329–333

    Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trend Ecol Evol 20:229–237

    Google Scholar 

  • Mallikarjuna N, Senapathy S, Jadhav DR, Saxena KB, Sharma HC, Upadhyaya HD (2011) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130:507–514

    CAS  Google Scholar 

  • Matibiri EA, Mantell SH (1994) Cybridization in Nicotiana tabacum L. using double inactivation of parental protoplasts and post-fusion selection based on nuclear –encoded and chloroplast –encoded marker genes. Theor Appl Genet 88:1017–1022

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Jesus Sanchez G, Buckler E, Doebley J (2002) A single domestication for maize sown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 30:6080–6084

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, London

    Google Scholar 

  • Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233

    PubMed  CAS  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Google Scholar 

  • Nakajo S, Niizeki M, Harada T, Ishikawa R, Saito K (1994) Somatic cell hybridization in rice (Oryza sativa L.) and birdsfoot trefoil (Lotus corniculatus L.). Breed Sci 44:79–81

    Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    PubMed  CAS  Google Scholar 

  • Nason JD, Ellstrand NC, Arnold ML (1992) Patterns of hybridization and introgression in populations of oaks, manzanitas and irises. Am J Bot 79:101–111

    Google Scholar 

  • Neal Stewart C Jr, Halfhill MD, Warwick SI (2003) Transgenic introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    PubMed  Google Scholar 

  • Nielsen KM (2003) Transgenic organisms - time for conceptual diversification? Nat Biotechnol 21:227–228

    PubMed  CAS  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) Mesoamerica. Theor Appl Genet 106:239–250

    PubMed  CAS  Google Scholar 

  • Pratap A, Gupta SK (2009a) Biology and Ecology of wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, FL, pp 37–68

    Google Scholar 

  • Pratap A, Gupta SK (2009b) Biotechnological interventions in host plant resistance. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation, dissemination and impact. Springer, Dordrecht, pp 183–207

    Google Scholar 

  • Pratap A, Choudhary AK, Kumar J (2010) In vitro techniques towards genetic enhancement of food legumes - a review. J Food Legumes 23:169–185

    Google Scholar 

  • Pratap A, Tomar R, Rajan N, Kumar J, Mathur PB, Malviya N, Anjum TK (2013) Towards enriching genomic resources in legumes. In: Nadarajan N, Gupta S, Gupta DS (eds) Legumes in omics era. Springer, New York, NY

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1986) The first resource: wild species in the North American economy. Yale University, New Haven, CT

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1988) Genes from the wild: using wild genetic resources for food and raw materials. International Institute for Environment and Development, London

    Google Scholar 

  • Puite KJ, Van Wikselaar P, Verhoeven H (1985) Electrofusion, a simple and reproducible technique in somatic hybridization of Nicotiana plumbaginifolia mutants. Plant Cell Rep 4:274–276

    Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    PubMed  CAS  Google Scholar 

  • Quist D, Chapela IH (2002) Maize transgene results in Mexico are artifacts-reply. Nature 416:602

    CAS  Google Scholar 

  • Ragan MA, Beiko RG (2009) Lateral genetic transfer: open issues. Philos Trans R Soc 364: 2241–2251

    CAS  Google Scholar 

  • Repellin A, Baga M, Jauhar PP, Chibbar RN (2001) Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tissue Org Cult 64:159–183

    CAS  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58L:1–9

    Google Scholar 

  • Rick CM (1974) High soluble solids content in large fruited tomato lines derived from a wild green fruited species. Hilgardia 42:492–510

    Google Scholar 

  • Riesberg LH, Ellstrnd NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241

    Google Scholar 

  • Rieseberg LH, Brunsfeld SJ (1992) Molecular evidence and plant introgression. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, NY, pp 151–176

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homeologus recombination. Nature 216:383–384

    Google Scholar 

  • Sarr A, Sandmeier M, Pernes J (1988) Gametophytic competition in pearl millet, Pennisetum typhoides (Stapf et Hubb). Genome 30:924–929

    Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006a) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753

    PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006b) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in-situ hybridization. Bios, Oxford, pp 203–XII

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Scudellari M (2011) Gene swap key to evolution. The scientist, http://classic.the-scientist.com/news/display/57962/

  • Sears ER (1956) Transfer of leaf-rust resistance from Aegilops umbelluta to wheat. Brookhaven Symp Biol 9:1–21

    Google Scholar 

  • Sigareva MA, Earle ED (1997) Direct transfer of a cold tolerant Ogura male –sterile cytoplasm into cabaggae (Brassica olaracea ssp. capitata) via protoplast fusion. Theor Appl Genet 94:213–220

    Google Scholar 

  • Sigareva MA, Earle ED (1999) Camelexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea . Theor Appl Genet 98:164–170

    CAS  Google Scholar 

  • Slatkin M (1987) Gene flow and the graphic structure of natural populations. Science 236: 787–792

    PubMed  CAS  Google Scholar 

  • Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G (2001) A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9:591–605

    PubMed  CAS  Google Scholar 

  • Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147

    Google Scholar 

  • Stebbins GL (1958) The inviability, weakness and sterility of hybrids. Adv Genet 9:147–215

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps, unlocking genetic potential from the wild. Science 277:1063–1066

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    PubMed  CAS  Google Scholar 

  • Vallenback P et al (2008) Origin and timing of the horizontal transfer of a PgiC gene from Poa to Festuca ovina. Mol Phylogenet Evol 46:890–896

    PubMed  CAS  Google Scholar 

  • Waara S, Glimelius K (1995) The potential of somatic hybridization in crop breeding. Euphytica 85:217–233

    Google Scholar 

  • Wallin A, Glimelius K, Eriksson T (1974) The induction of aggregation and fusion of Daucus carota protoplasts by polyethylene glycol. Z Pflanzenphysiol 74:64–80

    CAS  Google Scholar 

  • Wilson P (1992) On inferring hybridity from morphological intermediacy. Taxon 41:11–23

    Google Scholar 

  • Wolfe DE, Takebayashi N, Risenberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053

    Google Scholar 

  • Woloszynska M, Bocer T, Mackiewicz P, Janska H (2005) A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus. Plant Mol Biol 56:811–820

    Google Scholar 

  • Wolters AMA, Schoenmakers HCH, Kamstra S, Van Eden J, Koornneef M, de Jong JH (1994) Mitotic and meiotic irregularietis in somatic hybrids of Lycopesicon esculentum and Solenum tubersosum. Genome 37:726–735

    PubMed  CAS  Google Scholar 

  • Wolters AMA, Schoenmakers HCH, Koornneef M (1995) Chloroplast and mitochondrial DNA composition of triploid and tetraploid somatic hybrids between Lycopesicon esculentum and Solenum tubersosum. Theor. Appl Genet 90:285–293

    CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci U S A 100:10824–10829

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Mukai Y (1989) Application of fluoroscence in-situ hybridization to molecular cytogenetics of wheat. Wheat Inform Service 69:30–32

    Google Scholar 

  • Yamamoto M, Mukai Y (1995) Physical mapping of ribosomal RNA genes in Aegilops and Triticum. In: Li ZS, Xin ZY (eds), Proceedings of 8th international wheat genetics symposium, pp. 807–811, China: Beijing

    Google Scholar 

  • Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128

    PubMed  CAS  Google Scholar 

  • Zubko MK, Zubko EI, Patskovsky YV, Khvedynich OA, Fisahn J, Gleba YY, Schieder O (1996) Novel ‘homeotic’ CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Bot 47:1101–1110

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Pratap Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pratap, A., Kumar, J. (2014). Alien Gene Transfer in Crop Plants: An Introduction. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_1

Download citation

Publish with us

Policies and ethics