Skip to main content

Biological Therapy for Multiple Myeloma

  • Chapter
  • First Online:
Multiple Myeloma

Abstract

The National Cancer Institute defines biological therapy as: “A form of treatment that implies the administration of substances which produce a biological reaction in the organism thus enhancing or restoring the host immune response, modifying the behavior of cancer cells, blocking the pathways of cell neoplastic transformation and tumor ability to metastasize, or facilitating the repair of cells damaged by aggressive forms of cancer treatment. It includes the use of sera, antitoxins, vaccines, genes, cells, tissues, and organs.” In this chapter we will highlight different biological therapies that have been recently used against multiple myeloma (MM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baskar S, Muthusamy N. Antibody-based therapeutics for the treatment of human B cell malignancies. Curr Allergy Asthma Rep. 2012;13:33–43.

    Google Scholar 

  2. Dimitrov DS. Therapeutic proteins. Methods Mol Biol. 2012;899:1–26.

    PubMed  CAS  Google Scholar 

  3. Kreitman RJ, Pastan I. Immunotoxins in the treatment of hematologic malignancies. Curr Drug Targets. 2006;7(10):1301–11.

    PubMed  CAS  Google Scholar 

  4. Maloney DG. Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med. 2012;366(21): 2008–16.

    PubMed  CAS  Google Scholar 

  5. Jelovac D, Wolff AC. The adjuvant treatment of HER2-positive breast cancer. Curr Treat Options Oncol. 2012;13(2):230–9.

    PubMed  Google Scholar 

  6. Vale CL, et al. Does anti-EGFR therapy improve outcome in advanced colorectal cancer? A systematic review and meta-analysis. Cancer Treat Rev. 2012;38(6):618–25.

    PubMed  CAS  Google Scholar 

  7. Reff ME, et al. Depletion of B-cells in-vivo by a chimeric mouse-human monoclonal-antibody to Cd20. Blood. 1994;83(2):435–45.

    PubMed  CAS  Google Scholar 

  8. Treon SP, et al. CD20-directed serotherapy in patients with multiple myeloma: biologic considerations and therapeutic applications. J Immunother. 2002;25(1):72–81.

    PubMed  Google Scholar 

  9. Greipp PT, et al. Reply to ‘Rituximab in CD20 positive multiple myeloma’ by P Moreau et al. Leukemia. 2008;22(1):214–5.

    PubMed  CAS  Google Scholar 

  10. Kapoor P, et al. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol. 2008;141(2):135–48.

    PubMed  CAS  Google Scholar 

  11. Yang J, et al. Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell. 2006;10(4):295–307.

    PubMed  CAS  Google Scholar 

  12. Yang J, et al. Human-like mouse models for testing the efficacy and safety of anti-beta2-microglobulin monoclonal antibodies to treat myeloma. Clin Cancer Res. 2009;15(3):951–9.

    PubMed  CAS  Google Scholar 

  13. Malavasi F, et al. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994;15(3): 95–7.

    PubMed  CAS  Google Scholar 

  14. Lin P, et al. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121(4):482–8.

    PubMed  Google Scholar 

  15. de Weers M, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8.

    PubMed  Google Scholar 

  16. Tai YT, et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 2005;65(13):5898–906.

    PubMed  CAS  Google Scholar 

  17. Bensinger W, et al. A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br J Haematol. 2012;159(1):58–66.

    PubMed  CAS  Google Scholar 

  18. Hussein M, et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica. 2010;95(5):845–8.

    PubMed  CAS  Google Scholar 

  19. Mawby WJ, et al. Isolation and characterization of CD47 glycoprotein: a multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumour marker OA3. Biochem J. 1994;304(Pt 2):525–30.

    PubMed  CAS  Google Scholar 

  20. Zhan F, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood. 2002;99(5):1745–57.

    PubMed  CAS  Google Scholar 

  21. Kim D, et al. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia. 2012;26(12):2538–45.

    PubMed  CAS  Google Scholar 

  22. Ahsmann EJ, et al. Lymphocyte function-associated antigen-1 expression on plasma cells correlates with tumor growth in multiple myeloma. Blood. 1992;79(8):2068–75.

    PubMed  CAS  Google Scholar 

  23. Huang YW, Burrows FJ, Vitetta ES. Cytotoxicity of a novel anti-ICAM-1 immunotoxin on human myeloma cell lines. Hybridoma. 1993;12(6):661–75.

    PubMed  CAS  Google Scholar 

  24. Smallshaw JE, et al. The generation and anti-myeloma activity of a chimeric anti-CD54 antibody, cUV3. J Immunother. 2004;27(6):419–24.

    PubMed  CAS  Google Scholar 

  25. Huang YW, Richardson JA, Vitetta ES. Anti-CD54 (ICAM-1) has antitumor activity in SCID mice with human myeloma cells. Cancer Res. 1995;55(3): 610–6.

    PubMed  CAS  Google Scholar 

  26. Kraj M, et al. Clinicopathological correlates of plasma cell CD56 (NCAM) expression in multiple myeloma. Leuk Lymphoma. 2008;49(2):298–305.

    PubMed  CAS  Google Scholar 

  27. Harada H, et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood. 1993;81(10):2658–63.

    PubMed  CAS  Google Scholar 

  28. Tassone P, et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res. 2004;64(13):4629–36.

    PubMed  CAS  Google Scholar 

  29. Burton JD, et al. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res. 2004;10(19):6606–11.

    PubMed  CAS  Google Scholar 

  30. Stein R, et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood. 2004;104(12):3705–11.

    PubMed  CAS  Google Scholar 

  31. Sapra P, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11(14):5257–64.

    PubMed  CAS  Google Scholar 

  32. Sanderson RD, Lalor P, Bernfield M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989;1(1):27–35.

    PubMed  CAS  Google Scholar 

  33. Ikeda H, et al. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2009;15(12):4028–37.

    PubMed  CAS  Google Scholar 

  34. Hsi ED, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84.

    PubMed  CAS  Google Scholar 

  35. Tai YT, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4): 1329–37.

    PubMed  CAS  Google Scholar 

  36. van Rhee F, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616–24.

    PubMed  Google Scholar 

  37. Benson Jr DM, Byrd JC. CS1-directed monoclonal antibody therapy for multiple myeloma. J Clin Oncol. 2012;30(16):2013–5.

    PubMed  CAS  Google Scholar 

  38. Klein B, et al. Interleukin-6 in human multiple myeloma. Blood. 1995;85(4):863–72.

    PubMed  CAS  Google Scholar 

  39. Fulciniti M, et al. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res. 2009;15(23):7144–52.

    PubMed  CAS  Google Scholar 

  40. van Zaanen HC, et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol. 1998;102(3):783–90.

    PubMed  Google Scholar 

  41. Lonial S, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9.

    PubMed  CAS  Google Scholar 

  42. Allegra A, et al. Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. Eur J Haematol. 2013;90:441–68.

    PubMed  CAS  Google Scholar 

  43. Jakubowiak AJ, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5.

    PubMed  CAS  Google Scholar 

  44. Moreau P, et al. A combination of anti-interleukin 6 murine monoclonal antibody with dexamethasone and high-dose melphalan induces high complete response rates in advanced multiple myeloma. Br J Haematol. 2000;109(3):661–4.

    PubMed  CAS  Google Scholar 

  45. Zhou F-L, et al. Peptide-based immunotherapy for multiple myeloma: current approaches. Vaccine. 2010;28(37):5939–46.

    PubMed  CAS  Google Scholar 

  46. Zhang L, et al. Immunogenic targets for specific immunotherapy in multiple myeloma. Clin Dev Immunol. 2012;2012:820394.

    PubMed  Google Scholar 

  47. Nguyen-Pham TN, et al. Induction of myeloma-specific cytotoxic T lymphocytes responses by natural killer cells stimulated-dendritic cells in patients with multiple myeloma. Leuk Res. 2011;35(9):1241–7.

    PubMed  CAS  Google Scholar 

  48. Chen YT, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A. 1997;94(5):1914–8.

    PubMed  CAS  Google Scholar 

  49. Gnjatic S, et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res. 2006;95: 1–30.

    PubMed  CAS  Google Scholar 

  50. Szmania S, Tricot G, van Rhee F. NY-ESO-1 immunotherapy for multiple myeloma. Leuk Lymphoma. 2006;47(10):2037–48.

    PubMed  CAS  Google Scholar 

  51. van Rhee F, et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood. 2005;105(10):3939–44.

    PubMed  Google Scholar 

  52. Oka Y, et al. WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol. 2008;20(2):211–20.

    PubMed  CAS  Google Scholar 

  53. Azuma T, et al. Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin Cancer Res. 2004;10(21):7402–12.

    PubMed  CAS  Google Scholar 

  54. Tsuboi A, et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int J Hematol. 2007;86(5):414–7.

    PubMed  Google Scholar 

  55. Choi C, et al. Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood. 2005;105(5): 2132–4.

    PubMed  CAS  Google Scholar 

  56. Brossart P, et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res. 2001;61(18):6846–50.

    PubMed  CAS  Google Scholar 

  57. Giannopoulos K, et al. Expression of RHAMM/CD168 and other tumor-associated antigens in patients with B-cell chronic lymphocytic leukemia. Int J Oncol. 2006;29(1):95–103.

    PubMed  CAS  Google Scholar 

  58. Schmitt M, et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood. 2008;111(3):1357–65.

    PubMed  CAS  Google Scholar 

  59. Tian E, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349(26):2483–94.

    PubMed  CAS  Google Scholar 

  60. Yaccoby S, et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109(5):2106–11.

    PubMed  CAS  Google Scholar 

  61. Qian J, et al. Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood. 2007;110(5):1587–94.

    PubMed  CAS  Google Scholar 

  62. Grube M, et al. CD8+ T cells reactive to survivin antigen in patients with multiple myeloma. Clin Cancer Res. 2007;13(3):1053–60.

    PubMed  CAS  Google Scholar 

  63. Schmidt SM, et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood. 2003;102(2):571–6.

    PubMed  CAS  Google Scholar 

  64. Goto T, et al. A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood. 1994;84(6):1922–30.

    PubMed  CAS  Google Scholar 

  65. Hundemer M, et al. Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma. Exp Hematol. 2006;34(4):486–96.

    PubMed  CAS  Google Scholar 

  66. Christensen O, et al. Melan-A/MART1 analog peptide triggers anti-myeloma T-cells through crossreactivity with HM1.24. J Immunother. 2009;32(6):613–21.

    PubMed  CAS  Google Scholar 

  67. Atanackovic D, et al. Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma. Clin Cancer Res. 2009;15(4):1343–52.

    PubMed  CAS  Google Scholar 

  68. Andrade VC, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun. 2008;8:2.

    PubMed  Google Scholar 

  69. Ruffini PA, et al. Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines. Haematologica. 2002;87(9):989–1001.

    PubMed  Google Scholar 

  70. Lynch RG, et al. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci U S A. 1972;69(6):1540–4.

    PubMed  CAS  Google Scholar 

  71. Houet L, Veelken H. Active immunotherapy of multiple myeloma. Eur J Cancer. 2006;42(11):1653–60.

    PubMed  CAS  Google Scholar 

  72. Reichardt VL, et al. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica. 2003;88(10):1139–49.

    PubMed  Google Scholar 

  73. Rasmussen T, et al. Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells. Blood. 2003;101(11):4607–10.

    PubMed  CAS  Google Scholar 

  74. Coscia M, et al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia. 2004;18(1):139–45.

    PubMed  CAS  Google Scholar 

  75. Bendandi M, et al. Combined vaccination with idiotype-pulsed allogeneic dendritic cells and soluble protein idiotype for multiple myeloma patients relapsing after reduced-intensity conditioning allogeneic stem cell transplantation. Leuk Lymphoma. 2006;47(1):29–37.

    PubMed  CAS  Google Scholar 

  76. Abdalla AO, et al. Idiotype protein vaccination in combination with adjuvant cytokines in patients with multiple myeloma—evaluation of T-cell responses by different read-out systems. Haematologica. 2007;92(1):110–4.

    PubMed  CAS  Google Scholar 

  77. Abdalla AO, et al. Long-term effects of idiotype vaccination on the specific T-cell response in peripheral blood and bone marrow of multiple myeloma patients. Eur J Haematol. 2007;79(5):371–81.

    PubMed  CAS  Google Scholar 

  78. Hansson L, et al. Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res. 2007;13(5):1503–10.

    PubMed  CAS  Google Scholar 

  79. Curti A, et al. Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br J Haematol. 2007;139(3):415–24.

    PubMed  CAS  Google Scholar 

  80. Abdalla AO, et al. Idiotype vaccination in patients with myeloma reduced circulating myeloma cells (CMC). Ann Oncol. 2008;19(6):1172–9.

    PubMed  CAS  Google Scholar 

  81. Lacy MQ, et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol. 2009;84(12):799–802.

    PubMed  Google Scholar 

  82. Yi Q, et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol. 2010;150(5):554–64.

    PubMed  CAS  Google Scholar 

  83. Rollig C, et al. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother. 2011;34(1):100–6.

    PubMed  Google Scholar 

  84. Rosenblatt J, Avigan D. Cellular immunotherapy for multiple myeloma. Best Pract Res Clin Haematol. 2008;21(3):559–77.

    PubMed  CAS  Google Scholar 

  85. Garg TK, et al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica. 2012;97(9):1348–56.

    PubMed  CAS  Google Scholar 

  86. Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther. 2011;11(7):855–73.

    PubMed  CAS  Google Scholar 

  87. Rosenberg SA. Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med. 2012;4(127):127ps8.

    PubMed  Google Scholar 

  88. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23.

    PubMed  CAS  Google Scholar 

  89. Till BG, Press OW. Treatment of lymphoma with adoptively transferred T cells. Expert Opin Biol Ther. 2009;9(11):1407–25.

    PubMed  CAS  Google Scholar 

  90. Biagi E, et al. Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica. 2007;92(3):381–8.

    PubMed  Google Scholar 

  91. Di Stasi A, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83.

    PubMed  Google Scholar 

  92. Gahrton G, et al. Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma. J Clin Oncol. 1995;13(6):1312–22.

    PubMed  CAS  Google Scholar 

  93. Saitoh A, et al. Anti-tumor cytotoxicity of gammadelta T cells expanded from peripheral blood cells of patients with myeloma and lymphoma. Med Oncol. 2008;25(2):137–47.

    PubMed  CAS  Google Scholar 

  94. Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 2011;18(5):509–16.

    PubMed  CAS  Google Scholar 

  95. Meehan KR, et al. Adoptive cellular therapy using cells enriched for NKG2D(+)CD3(+)CD8(+)T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant. 2012;19:129–37.

    PubMed  Google Scholar 

  96. Patil S, Schwarer T. Natural killer cells—new understanding of basic biology may lead to more effective allogeneic haematopoietic stem cell transplantation. Intern Med J. 2009;39(10):639–47.

    PubMed  CAS  Google Scholar 

  97. Shi J, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol. 2008;143(5):641–53.

    PubMed  Google Scholar 

  98. Katodritou E, et al. Tumor-primed natural killer cells from patients with multiple myeloma lyse autologous, NK-resistant, bone marrow-derived malignant plasma cells. Am J Hematol. 2011;86(12):967–73.

    PubMed  CAS  Google Scholar 

  99. Fujisaki H, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–7.

    PubMed  CAS  Google Scholar 

  100. Arai S, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6): 625–32.

    PubMed  CAS  Google Scholar 

  101. Swift BE, et al. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model. Haematologica. 2012;97(7):1020–8.

    PubMed  CAS  Google Scholar 

  102. Alici E, et al. Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood. 2008;111(6):3155–62.

    PubMed  CAS  Google Scholar 

  103. Grimm EA, et al. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.

    PubMed  CAS  Google Scholar 

  104. Schmidt-Wolf IG, et al. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49.

    PubMed  CAS  Google Scholar 

  105. Linn YC, Hui KM. Cytokine-induced NK-like T cells: from bench to bedside. J Biomed Biotechnol. 2010;2010:435745.

    PubMed  Google Scholar 

  106. Marten A, et al. Enhanced lytic activity of cytokine-induced killer cells against multiple myeloma cells after co-culture with idiotype-pulsed dendritic cells. Haematologica. 2001;86(10):1029–37.

    PubMed  CAS  Google Scholar 

  107. Lin J, et al. Autologous cytokine-induced killer cells in the treatment of multiple myeloma concomitant with lung cancer and paraneoplastic dermatoses. Intern Med. 2010;49(21):2341–6.

    PubMed  CAS  Google Scholar 

  108. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–9.

    PubMed  CAS  Google Scholar 

  109. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–70.

    PubMed  CAS  Google Scholar 

  110. Stief AE, McCart JA. Oncolytic virotherapy for multiple myeloma. Expert Opin Biol Ther. 2008;8(4): 463–73.

    PubMed  CAS  Google Scholar 

  111. Naik S, et al. Curative one-shot systemic virotherapy in murine myeloma. Leukemia. 2012;26(8):1870–8.

    PubMed  CAS  Google Scholar 

  112. Thirukkumaran CM, et al. Reovirus as a viable therapeutic option for the treatment of multiple myeloma. Clin Cancer Res. 2012;18:4962–72.

    PubMed  CAS  Google Scholar 

  113. Naik S, et al. Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-beta. Cancer Gene Ther. 2012;19(7):443–50.

    PubMed  CAS  Google Scholar 

  114. Bartee E, et al. Selective purging of human multiple myeloma cells from autologous stem cell transplantation grafts using oncolytic myxoma virus. Biol Blood Marrow Transplant. 2012;18(10):1540–51.

    PubMed  Google Scholar 

  115. Chen CY, et al. Species D adenoviruses as oncolytics against B-cell cancers. Clin Cancer Res. 2011;17(21): 6712–22.

    PubMed  CAS  Google Scholar 

  116. Hadac EM, Kelly EJ, Russell SJ. Myeloma xenograft destruction by a nonviral vector delivering oncolytic infectious nucleic acid. Mol Ther. 2011;19(6):1041–7.

    PubMed  CAS  Google Scholar 

  117. Deng H, et al. Oncolytic virotherapy for multiple myeloma using a tumour-specific double-deleted vaccinia virus. Leukemia. 2008;22(12):2261–4.

    PubMed  CAS  Google Scholar 

  118. Dingli D, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 2004;103(5):1641–6.

    PubMed  CAS  Google Scholar 

  119. Kawa A, Arakawa S. The effect of attenuated vaccinia virus AS strain on multiple myeloma; a case report. Jpn J Exp Med. 1987;57(1):79–81.

    PubMed  CAS  Google Scholar 

  120. Munguia A, et al. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther. 2008;15(10):797–806.

    PubMed  CAS  Google Scholar 

  121. Thirukkumaran CM, Morris DG. Oncolytic virotherapy for multiple myeloma: past, present, and future. Bone Marrow Res. 2011;2011:632948.

    PubMed  Google Scholar 

  122. Wickham TJ, et al. Integrins ±v23 and ±v25 promote adenovirus internalization but not virus attachment. Cell. 1993;73(2):309–19.

    PubMed  CAS  Google Scholar 

  123. Teoh G, et al. Adenovirus vector-based purging of multiple myeloma cells. Blood. 1998;92(12):4591–601.

    PubMed  CAS  Google Scholar 

  124. Neri A, et al. p53 gene mutations in multiple myeloma are associated with advanced forms of malignancy. Blood. 1993;81(1):128–35.

    PubMed  CAS  Google Scholar 

  125. Liu Q, Gazitt Y. Adenovirus-mediated delivery of p53 results in substantial apoptosis to myeloma cells and is not cytotoxic to flow-sorted CD34(+) hematopoietic progenitor cells and normal lymphocytes. Exp Hematol. 2000;28(12):1354–62.

    PubMed  CAS  Google Scholar 

  126. Otsuki T, et al. Estrogen receptors in human myeloma cells. Cancer Res. 2000;60(5):1434–41.

    PubMed  CAS  Google Scholar 

  127. Wilson CS, et al. Cyclin D1 and E2F-1 immunoreactivity in bone marrow biopsy specimens of multiple myeloma: relationship to proliferative activity, cytogenetic abnormalities and DNA ploidy. Br J Haematol. 2001;112(3):776–82.

    PubMed  CAS  Google Scholar 

  128. Fernandes MS, et al. Growth inhibition of human multiple myeloma cells by an oncolytic adenovirus carrying the CD40 ligand transgene. Clin Cancer Res. 2009;15(15):4847–56.

    PubMed  CAS  Google Scholar 

  129. Senac JS, et al. Infection and killing of multiple myeloma by adenoviruses. Hum Gene Ther. 2010;21(2):179–90.

    PubMed  CAS  Google Scholar 

  130. Shafren DR, et al. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol. 1997;71(6):4736–43.

    PubMed  CAS  Google Scholar 

  131. Au GG, et al. Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br J Haematol. 2007;137(2):133–41.

    PubMed  CAS  Google Scholar 

  132. Kelly EJ, et al. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med. 2008;14(11):1278–83.

    PubMed  CAS  Google Scholar 

  133. Naniche D, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993;67(10):6025–32.

    PubMed  CAS  Google Scholar 

  134. Tatsuo H, et al. SLAM (CDw150) is a cellular receptor for measles virus. Nature. 2000;406(6798):893–7.

    PubMed  CAS  Google Scholar 

  135. Ong HT, et al. Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol. 2006;34(6):713–20.

    PubMed  CAS  Google Scholar 

  136. Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther. 2009;11(1):43–53.

    PubMed  CAS  Google Scholar 

  137. Peng KW, et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood. 2001;98(7):2002–7.

    PubMed  CAS  Google Scholar 

  138. Liu C, Russell SJ, Peng KW. Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol Ther. 2010;18(6):1155–64.

    PubMed  CAS  Google Scholar 

  139. Peng KW, et al. Tumor-associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma. Am J Hematol. 2009;84(7):401–7.

    PubMed  CAS  Google Scholar 

  140. Ong HT, et al. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther. 2007;14(4):324–33.

    PubMed  CAS  Google Scholar 

  141. Myers RM, et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther. 2007;82(6):700–10.

    PubMed  CAS  Google Scholar 

  142. Wilcox ME, et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst. 2001;93(12):903–12.

    PubMed  CAS  Google Scholar 

  143. Thirukkumaran CM, et al. Oncolytic viral therapy for prostate cancer: efficacy of reovirus as a biological therapeutic. Cancer Res. 2010;70(6):2435–44.

    PubMed  CAS  Google Scholar 

  144. Norman KL, et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther. 2002;13(5):641–52.

    PubMed  CAS  Google Scholar 

  145. Comins C, et al. Reovirus: viral therapy for cancer ‘as nature intended’. Clin Oncol. 2008;20(7):548–54.

    CAS  Google Scholar 

  146. Steinbrunn T, et al. Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood. 2011;117(6):1998–2004.

    PubMed  CAS  Google Scholar 

  147. Thirukkumaran CM, et al. Reovirus oncolysis as a novel purging strategy for autologous stem cell transplantation. Blood. 2003;102(1):377–87.

    PubMed  CAS  Google Scholar 

  148. Kelly KR, et al. Reovirus therapy stimulates endoplasmic reticular stress, NOXA induction, and augments bortezomib-mediated apoptosis in multiple myeloma. Oncogene. 2012;31(25):3023–38.

    PubMed  CAS  Google Scholar 

  149. Vidal L, et al. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res. 2008;14(21): 7127–37.

    PubMed  CAS  Google Scholar 

  150. Gurvich EB, Vilesova IS. Vaccinia virus in postvaccinal encephalitis. Acta Virol. 1983;27(2):154–9.

    PubMed  CAS  Google Scholar 

  151. Turkel SB, Overturf GD. Vaccinia necrosum complicating immunoblastic sarcoma. Cancer. 1977;40(1):226–33.

    PubMed  CAS  Google Scholar 

  152. Lichty BD, et al. Vesicular stomatitis virus: a potential therapeutic virus for the treatment of hematologic malignancy. Hum Gene Ther. 2004;15(9): 821–31.

    PubMed  CAS  Google Scholar 

  153. Goel A, et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood. 2007;110(7):2342–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Russell M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Mayo Foundation for Medical Education and Research

About this chapter

Cite this chapter

Ayala-Breton, C., Russell, S.J., Peng, KW. (2014). Biological Therapy for Multiple Myeloma. In: Gertz, M., Rajkumar, S. (eds) Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8520-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8520-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8519-3

  • Online ISBN: 978-1-4614-8520-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics