Skip to main content

Bridging the Gap Between Modeling of Tumor Growth and Clinical Imaging

  • Chapter
  • First Online:
Abdomen and Thoracic Imaging

Abstract

This chapter gives a brief overview of the biological processes involved in vascularized tumor growth, followed by a summary of recent mathematical modeling to simulate the biology of tumor growth and angiogenesis. It provides an overview of medical image analysis and describes recent efforts in the area of coupling such tumor models with imaging data. We do not discuss the research of obtaining tumor-specific information from medical imaging data, for which extensive work has been done in image processing and signal analysis. The chapter concludes with a sample simulation of vascularized tumor growth showing the critical role of vascularization in tumor invasiveness and highlighting the potential of gaining further insight into tumor behavior from a more expansive future integration of 3D tumor models with clinical imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23:R1–R9

    PubMed  Google Scholar 

  2. Frieboes HB, Chaplain MA, Thompson AM, Bearer EL, Lowengrub JS, Cristini V (2011) Physical oncology: a bench-to-bedside quantitative and predictive approach. Cancer Res 71:298–302

    PubMed  CAS  Google Scholar 

  3. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10:221–230

    PubMed  CAS  Google Scholar 

  4. Astanin S, Preziosi L (2007) Multiphase models of tumour growth. In: Bellomo N, Chaplain M, DeAngelis E (eds) Selected topics on cancer modelling: genesis—evolution—immune competition—therapy. Birkhäuser, Boston, pp 1–31

    Google Scholar 

  5. Harpold HL, Alvord EC Jr, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66:1–9

    PubMed  Google Scholar 

  6. Anderson ARA, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8:227–244

    PubMed  CAS  Google Scholar 

  7. Deisboeck TS, Zhang L, Yoon J, Costa J (2009) In silico cancer modeling: is it ready for prime time? Nat Clin Pract Oncol 6:34–42

    PubMed  CAS  Google Scholar 

  8. Ventura AC, Jackson TL, Merajver SD (2009) On the role of cell signaling models in cancer research. Cancer Res 69:400–402

    PubMed  CAS  Google Scholar 

  9. Massey SC, Assanah MC, Lopez KA, Canoll P, Swanson KR (2012) Glial progenitor cell recruitment drives aggressive glioma growth: mathematical and experimental modeling. J R Soc Interface 9:1757–1766

    PubMed  Google Scholar 

  10. Sinek JP, Sanga S, Zheng X, Frieboes HB, Ferrari M, Cristini V (2009) Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. J Math Biol 58:485–510

    PubMed  Google Scholar 

  11. van de Ven AL, Wu M, Lowengrub J, McDougall SR, Chaplain MA, Cristini V, Ferrari M, Frieboes HB (2012) Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv 2:11208

    PubMed  Google Scholar 

  12. Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V (2006) An integrated computational/experimental model of tumor invasion. Cancer Res 66:1597–1604

    PubMed  CAS  Google Scholar 

  13. Frieboes HB, Lowengrub JS, Wise SM, Zheng X, Macklin P, Bearer EL, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37:S59–S70

    PubMed  Google Scholar 

  14. Frieboes HB, Edgerton ME, Fruehauf JP, Rose FR, Worrall LK, Gatenby RA, Ferrari M, Cristini V (2009) Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res 69:4484–4492

    PubMed  CAS  Google Scholar 

  15. Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, Cristini V (2010) Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J Theor Biol 264:254–278

    Google Scholar 

  16. Frieboes HB, Smith BR, Chuang YL, Ito K, Roettgers AM, Gambhir SS, Cristini V (2013) An integrated computational/experimental model of lymphoma growth. PLoS Comput Biol 9(3):e1003008

    PubMed  CAS  Google Scholar 

  17. Gu S, Chakraborty G, Champley K, Alessio AM, Claridge J, Rockne R, Muzi M, Krohn KA, Spence AM, Alvord EC Jr, Anderson AR, Kinahan PE, Swanson KR (2012) Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images. Math Med Biol 29:31–48

    PubMed  Google Scholar 

  18. Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC Jr, Anderson AR (2011) Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res 71:7366–7375

    PubMed  CAS  Google Scholar 

  19. Enderling H, Chaplain MA, Hahnfeldt P (2010) Quantitative modeling of tumor dynamics and radiotherapy. Acta Biotheor 58:341–353

    PubMed  Google Scholar 

  20. Rockne R, Alvord EC Jr, Rockhill JK, Swanson KR (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58:561–578

    PubMed  CAS  Google Scholar 

  21. Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC Jr, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55:3271–3285

    PubMed  CAS  Google Scholar 

  22. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  23. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    PubMed  CAS  Google Scholar 

  24. Zwick S, Strecker R, Kiselev V, Gall P, Huppert J, Palmowski M, Lederle W, Woenne E, Hengerer A, Taupitz M, Semmler W, Kiessling F (2009) Assessment of vascular remodeling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imaging 29:1125–1133

    PubMed  Google Scholar 

  25. Huang J, Soffer S, Kim E, McCrudden K, Huang J, New T, Manley C, Middlesworth W, O’Toole K, Yamashiro D, Kandel J (2004) Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2:36–42

    PubMed  CAS  Google Scholar 

  26. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    PubMed  CAS  Google Scholar 

  27. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362

    PubMed  CAS  Google Scholar 

  28. Raza A, Franklin M, Dudek A (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598

    PubMed  CAS  Google Scholar 

  29. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  30. Gimbrone MA, Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413–427

    PubMed  Google Scholar 

  31. De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21:73–79

    PubMed  Google Scholar 

  32. Greene J, Cheresh D (2009) VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy. Expert Opin Biol Ther 9:1347–1356

    Google Scholar 

  33. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    PubMed  CAS  Google Scholar 

  34. Jain R (2001) Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 74:7–25

    PubMed  CAS  Google Scholar 

  35. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    PubMed  CAS  Google Scholar 

  36. Gaffney EA, Pugh K, Maini PK, Arnold F (2002) Investigating a simple model of cutaneous wound healing angiogenesis. J Math Biol 45:337–374

    PubMed  CAS  Google Scholar 

  37. van Leeuwen IMM, Edwards CM, Ilyas M, Byrne HM (2007) Towards a multiscale model of colorectal cancer. World J Gastroenterol 13:1399–1407

    PubMed  Google Scholar 

  38. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Review 49:179–208

    Google Scholar 

  39. Owen MR, Alarcón T, Maini PK, Byrne HM (2009) Angiogenesis and vascular remodeling in normal and cancerous tissues. J Math Biol 58:689–721

    PubMed  Google Scholar 

  40. Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol 67:211–259

    PubMed  CAS  Google Scholar 

  41. Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub JS (2009) Multiscale modeling and simulation of vascular tumour growth. J Math Biol 58:765–798

    PubMed  Google Scholar 

  42. Ramis-Conde I, Chaplain MAJ, Anderson ARA, Drasdo D (2009) Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6:016008

    PubMed  Google Scholar 

  43. Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991

    PubMed  Google Scholar 

  44. Michor F (2008) Mathematical models of cancer stem cells. J Clin Oncol 26:2854–2861

    PubMed  Google Scholar 

  45. Enderling H, Chaplain MAJ, Anderson ARA, Vaidya JS (2007) A mathematical model of breast cancer development, local treatment and recurrence. J Theor Biol 246:245–259

    PubMed  CAS  Google Scholar 

  46. Kim Y, Stolarska MA, Othmer HG (2007) A hybrid model for tumor spheroid growth in vitro I: theoretical development and early results. Math Meth Appl Sci 17:1773–1798

    CAS  Google Scholar 

  47. Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152:377–403

    PubMed  CAS  Google Scholar 

  48. Anderson A, Chaplain MAJ (1998) Continuous and discrete mathematical model of tumour-induced angiogenesis. Bull Math Biol 60:857–899

    PubMed  CAS  Google Scholar 

  49. Tong S, Yuan F (2001) Numerical simulations of angiogenesis in the cornea. Microvasc Res 61:14–27

    PubMed  CAS  Google Scholar 

  50. Plank MJ, Sleeman BD (2003) A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol 20:135–181

    PubMed  CAS  Google Scholar 

  51. Plank MJ, Sleeman BD (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66:1785–1819

    PubMed  CAS  Google Scholar 

  52. Sun S, Wheeler MF, Obeyesekere M, Patrick C Jr (2005) Multiscale angiogenesis modeling using mixed finite element methods. Multiscale Model Simul 4:1137–1167

    Google Scholar 

  53. Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67:313–337

    PubMed  CAS  Google Scholar 

  54. Kevrekidis PG, Whitaker N, Good DJ, Herring GJ (2006) Minimal model for tumor angiogenesis. Phys Rev E 73:061926

    CAS  Google Scholar 

  55. Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121

    PubMed  CAS  Google Scholar 

  56. Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146–3160

    PubMed  CAS  Google Scholar 

  57. Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58:219–233

    PubMed  Google Scholar 

  58. Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol Heart Circ Physiol 275:H349–H360

    CAS  Google Scholar 

  59. McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt J (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64:673–702

    PubMed  CAS  Google Scholar 

  60. Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comput Model 41:1137–1156

    Google Scholar 

  61. Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modeling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math Comput Model 44:96–123

    Google Scholar 

  62. McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modeling of dynamic adaptive tumour-induced angiogenesis: clinical applications and therapeutic targeting strategies. J Theor Biol 241:564–589

    PubMed  Google Scholar 

  63. Wu J, Zhou F, Cui S (2007) Simulation of microcirculation in solid tumors. IEEE/ICME international conference on complex medical engineering (CME), Beijing, China, pp 1555–1563

    Google Scholar 

  64. Zhao G, Wu J, Xu S, Collins MW, Long Q, Koenig CS, Jiang Y, Wang J, Padhani AR (2007) Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor induced angiogenesis. Mech Sin 23:477–483

    Google Scholar 

  65. Sun CH, Munn LL (2008) Lattice-Boltzmann simulation of blood flow in digitized vessel networks. Comput Math Appl 55:1594–1600

    PubMed  Google Scholar 

  66. Pries AR, Secomb TW (2008) Modeling structural adaptation of microcirculation. Microcirculation 15:753–764

    PubMed  Google Scholar 

  67. Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225:257–274

    PubMed  Google Scholar 

  68. Betteridge R, Owen MR, Byrne HM, Alarcón T, Maini PK (2006) The impact of cell crowding and active cell movement on vascular tumour growth. Netw Heterogen Media 1:515–535

    Google Scholar 

  69. Chapman SJ, Shipley R, Jawad R (2008) Multiscale modeling of fluid transport in tumors. Bull Math Biol 70:2334–2357

    PubMed  Google Scholar 

  70. Byrne HM, Chaplain MAJ (1995) Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 57:461–486

    PubMed  CAS  Google Scholar 

  71. Orme ME, Chaplain MAJ (1997) Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. Math Med Biol 14:189–205

    CAS  Google Scholar 

  72. de Angelis E, Preziosi L (2000) Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem. Math Models Meth Appl Sci 10:379–407

    Google Scholar 

  73. Sansone BC, Scalerandi M, Condat CA (2001) Emergence of taxis and synergy in angiogenesis. Phys Rev Lett 87:128102

    Google Scholar 

  74. Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M (2001) Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63:801–863

    PubMed  CAS  Google Scholar 

  75. Levine HA, Sleeman BD, Nilsen-Hamilton M (2001) Mathematical modeling of the onset of capillary formation initiating angiogenesis. J Math Biol 42:195–238

    PubMed  CAS  Google Scholar 

  76. Levine HA, Tucker AL, Nilsen-Hamilton MA (2002) Mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors 20:155–175

    PubMed  CAS  Google Scholar 

  77. Hogea CS, Murray BT, Sethian JA (2006) Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J Math Biol 53:86–134

    PubMed  Google Scholar 

  78. Peterson JW, Carey GF, Knezevic DJ, Murray BT (2007) Adaptive finite element methodology for tumour angiogenesis modeling. Int J Numer Methods Eng 69:1212–1238

    Google Scholar 

  79. Stamper IJ, Byrne HM, Owen MR, Maini PK (2007) Modelling the role of angiogenesis and vasculogenesis in solid tumour growth. Bull Math Biol 69:2737–2772

    PubMed  CAS  Google Scholar 

  80. Jain HV, Nor JE, Jackson TL (2008) Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral angiogenesis. Bull Math Biol 70:89–117

    PubMed  Google Scholar 

  81. Addison-Smith B, McElwain DLS, Maini PK (2008) A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. J Theor Biol 250:1–15

    PubMed  CAS  Google Scholar 

  82. Merks RMH, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289:44–54

    PubMed  CAS  Google Scholar 

  83. Merks RMH, Glazier JA (2006) Dynamic mechanisms of blood vessel growth. Nonlinearity 19:C1–C10

    PubMed  Google Scholar 

  84. Merks RMH, Perrynand ED, Shirinifard A, Glazier JA (2008) Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput Biol 4:e1000163

    PubMed  Google Scholar 

  85. Ambrosi D, Gamba A, Serini G (2004) Cell directional and chemotaxis in vascular morphogenesis. Bull Math Biol 66:1851–1873

    PubMed  CAS  Google Scholar 

  86. Coniglio A, deCandia A, DiTalia S, Gamba A (2004) Percolation and Burgers’ dynamics in a model of capillary formation. Phys Rev E 69:051910

    CAS  Google Scholar 

  87. Gamba A, Ambrosi D, Coniglio A, deCandia A, DiTalia S, Giraudo E, Serini G, Preziosi L, Bussolino F (2003) Percolation, morphogenesis and burgers dynamics in blood vessels formation. Phys Rev Lett 90:118101

    PubMed  CAS  Google Scholar 

  88. Holmes M, Sleeman B (2000) A mathematical model of tumor angiogenesis incorporating cellular traction and viscoelastic effects. J Theor Biol 202:95–112

    PubMed  CAS  Google Scholar 

  89. Lanza V, Ambrosi D, Preziosi L (2006) Exogenous control of vascular network formation in vitro: a mathematical model. Netw Heterogen Media 1:621–637

    Google Scholar 

  90. Manoussaki D, Lubkin SR, Vernon RB, Murray JD (1996) A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44:271–282

    PubMed  CAS  Google Scholar 

  91. Murray J, Oster G (1984) Cell traction models for generation of pattern and form in morphogenesis. J Math Biol 33:489–520

    Google Scholar 

  92. Ngwa G, Maini P (1995) Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis. J Math Biol 33:489–520

    PubMed  CAS  Google Scholar 

  93. Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F (2003) Modeling the early stages of vascular network assembly. EMBO J 22:1771–1779

    PubMed  CAS  Google Scholar 

  94. Tosin A, Ambrosi D, Preziosi L (2006) Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull Math Biol 68:1819–1836

    PubMed  CAS  Google Scholar 

  95. Cristini V, Lowengrub JS, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46:191–224

    PubMed  Google Scholar 

  96. Gevertz JL, Torquato S (2006) Modeling the effects of vasculature evolution on early brain tumor growth. J Theor Biol 243:517–531

    PubMed  CAS  Google Scholar 

  97. Bartha K, Rieger H (2006) Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol 241:903–918

    PubMed  CAS  Google Scholar 

  98. Wcislo R, Dzwinel W (2008) Particle based model of tumor progression stimulated by the process of angiogenesis. In: Adam J, Bellomo N (eds) Computer science—ICCS. Springer, Heidelberg, pp 177–186

    Google Scholar 

  99. Alarcón T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Simul 3:440–475

    Google Scholar 

  100. Lee DS, Rieger H, Bartha K (2006) Flow correlated percolation during vascular remodeling in growing tumors. Phys Rev Lett 96:058104

    PubMed  Google Scholar 

  101. Welter M, Bartha K, Rieger H (2008) Emergent vascular network inhomogenities and resulting blood flow patterns in a growing tumor. J Theor Biol 250:257–280

    PubMed  CAS  Google Scholar 

  102. Welter M, Bartha K, Rieger H (2008) Hot spot formation in tumor vasculature during tumor growth in an arterio-venous-network environment. arXiv:0801.0654v2[q-bio.To]

    Google Scholar 

  103. Lloyd BA, Szczerba D, Rudin M, Szekely G (2008) A computational framework for modeling solid tumour growth. Philos Trans A Math Phys Eng Sci 366:3301–3318

    PubMed  Google Scholar 

  104. Bearer EL, Lowengrub JS, Chuang YL, Frieboes HB, Jin F, Wise SM, Ferrari M, Agus DB, Cristini V (2009) Multiparameter computational modeling of tumor invasion. Cancer Res 69:4493–4501

    PubMed  CAS  Google Scholar 

  105. Phipps C, Kohandel M (2011) Mathematical model of the effect of interstitial fluid pressure on angiogenic behavior in solid tumors. Comput Math Meth Med 2011:843765

    Google Scholar 

  106. Stoll BR, Migliorini C, Kadambi A, Munn LL, Jain RK (2003) A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood 102:2555–2561

    PubMed  CAS  Google Scholar 

  107. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:526–538

    PubMed  CAS  Google Scholar 

  108. Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol Heart Circ Physiol 263:H1770–H1778

    CAS  Google Scholar 

  109. Pries AR, Cornelissen AJ, Sloot AA, Hinkeldey M, Dreher MR, Höpfner M, Dewhirst MW, Secomb TW (2009) Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol 5:e1000394

    PubMed  Google Scholar 

  110. Wu M, Frieboes HB, McDougall SR, Chaplain MAJ, Cristini V, Lowengrub V (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131–151

    PubMed  Google Scholar 

  111. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337

    PubMed  CAS  Google Scholar 

  112. Plajer IC, Richter D (2010) A new approach to model based active contours in lung tumor segmentation in 3D CT image data. In: IEEE international conference on Information Technology and Applications in Biomedicine (ITAB), 3–5 Nov 2010, pp 1–4

    Google Scholar 

  113. Dunlap NE, Yang W, McIntosh A, Sheng K, Benedict SH, Read PW, Larner JM (2012) Computed tomography-based anatomic assessment overestimates local tumor recurrence in patients with mass-like consolidation after stereotactic body radiotherapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:1071–1077

    PubMed  Google Scholar 

  114. National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409

    PubMed  Google Scholar 

  115. Ko JP, Rusinek H, Naidich DP, McGuinness G, Rubinowitz AN, Leitman BS, Martino JM (2003) Wavelet compression of low-dose chest CT data: effect on lung nodule detection. Radiology 228:70–75

    PubMed  Google Scholar 

  116. Li F, Arimura H, Suzuki K, Shiraishi J, Li Q, Abe H, Engelmann R, Sone S, MacMahon H, Doi K (2005) Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237:684–690

    PubMed  Google Scholar 

  117. Armato SG, Li F, Giger ML, MacMahon H, Sone S, Doi K (2002) Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology 225:685–692

    PubMed  Google Scholar 

  118. Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, ELCAP Group (2002) CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 178:1053–1057

    PubMed  Google Scholar 

  119. Ko JP, Rusinek H, Jacobs EL, Babb JS, Betke M, McGuinness G, Naidich DP (2003) Small pulmonary nodules: volume measurement at chest CT—phantom study. Radiology 228:864–870

    PubMed  Google Scholar 

  120. Gurney JW (1993) Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. Theory. Radiology 186:405–413

    PubMed  CAS  Google Scholar 

  121. Yamashita K, Matsunobe S, Tsuda T, Nemoto T, Matsumoto K, Miki H, Konishi J (1995) Solitary pulmonary nodule: preliminary study of evaluation with incremental dynamic CT. Radiology 194:399–405

    PubMed  CAS  Google Scholar 

  122. Lee J, Aronchick JM, Alavi A (2001) Accuracy of F-18 fluorodeoxyglucose positron emission tomography for the evaluation of malignancy in patients presenting with new lung abnormalities: a retrospective review. Chest 120:1791–1797

    PubMed  CAS  Google Scholar 

  123. Kennel SJ, Davis IA, Branning J, Pan H, Kabalka GW, Paulus MJ (2000) High resolution commuted tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys 27:1101–1107

    PubMed  CAS  Google Scholar 

  124. Suryanto A, Herlambang K, Rachmatullah P (2005) Comparison of tumor density by CT scan based on histologic type in lung cancer patients. Acta Med Indones 37:195–198

    PubMed  Google Scholar 

  125. Petralia G, Bonello L, Viotti S, Preda L, d’Andrea G, Bellomi M (2010) CT perfusion in oncology: how to do it. Cancer Imaging 10:8–19

    PubMed  CAS  Google Scholar 

  126. Ma SH, Le HB, Jia BH, Wang ZX, Xiao ZW, Cheng XL, Mei W, Wu M, Hu ZG, Li YG (2008) Peripheral pulmonary nodules: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer 8:186

    PubMed  Google Scholar 

  127. Tateishi U, Kusumoto M, Nishihara H, Nagashima K, Morikawa T, Moriyama N (2002) Contrast-enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma. Cancer 95:835–842

    PubMed  Google Scholar 

  128. Li Y, Yang ZG, Chen TW, Chen HJ, Sun JY, Lu YR (2008) Peripheral lung carcinoma: correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT. Lung Cancer 61:44–53

    PubMed  Google Scholar 

  129. van de Ven A, Abdollahi B, Martinez C, Paskett LA, Landis MD, Chang JC, Ferrari M, Frieboes HB (2013) Predictive modeling of nanotherapeutics delivery based on tumor perfusion. New J Phys, in press

    Google Scholar 

  130. Swanson KR, Alvord EC Jr, Murray JD (2002) Virtual brain tumors (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86:14–18

    PubMed  CAS  Google Scholar 

  131. Konukoglu E, Clatz O, Menze BH, Weber MA, Stieltjes B, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equation. IEEE Trans Med Imaging 29:77–95

    PubMed  Google Scholar 

  132. Menze BH, Leempu KV, Honkela A, Konukoglu E, Weber M-A, Ayache N, Golland P (2011) A generative approach for image-based modeling of tumor growth. Inf Process Med Imaging 22:735–747

    PubMed  Google Scholar 

  133. Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effect. J Math Biol 56:793–825

    PubMed  Google Scholar 

  134. Swanson KR, Alvord EC Jr, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317–329

    PubMed  CAS  Google Scholar 

  135. Swanson KR, Rostomily RC, Alvord EC Jr (2008) A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98:113–119

    PubMed  CAS  Google Scholar 

  136. Clatz O, Semesant M, Bondiau P-Y, Delingette H, Wasfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24:1334–1346

    PubMed  Google Scholar 

  137. Swanson KR, Alvord EC Jr, Murray JD (2004) Dynamics of a model for brain tumors reveals a small window for therapeutic intervention. Discrete Cont Dyn Syst 4:289–295

    Google Scholar 

  138. Jbadi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pelegrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54:616–624

    Google Scholar 

  139. Mandonnet E, Pallud J, Clatz O, Taillandier L, Konukoglu E, Duffau H, Capelle L (2008) Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg Rev 31:263–269

    PubMed  Google Scholar 

  140. Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. Med Image Comput Comput Assist Interv 10:642–650

    PubMed  Google Scholar 

  141. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques. Models, features and extraction schemes. Med Image Anal 13:819–845

    PubMed  Google Scholar 

  142. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61:6624–6628

    PubMed  CAS  Google Scholar 

  143. Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari M, Sinek J (2005) Morphologic instability and cancer invasion. Clin Cancer Res 11:6772–6779

    PubMed  CAS  Google Scholar 

  144. Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–314

    PubMed  CAS  Google Scholar 

  145. Lamszus K, Kunkel P, Westphal M (2003) Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88:169–177

    PubMed  CAS  Google Scholar 

  146. Bello L, Lucini V, Costa F, Pluderi M, Giussani C, Acerbi F, Carrabba G, Pannacci M, Caronzolo D, Grosso S, Shinkaruk S, Colleoni F, Canron X, Tomei G, Deleris G, Bikfalvi A (2004) Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma. Clin Cancer Res 10:4527–4537

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann B. Frieboes Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abdollahi, B., Dunlap, N., Frieboes, H.B. (2014). Bridging the Gap Between Modeling of Tumor Growth and Clinical Imaging. In: El-Baz, A., Saba, L., Suri, J. (eds) Abdomen and Thoracic Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8498-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8498-1_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8497-4

  • Online ISBN: 978-1-4614-8498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics