Skip to main content

The Hypothalamic–Pituitary Axis in PCOS

  • Chapter
  • First Online:
Polycystic Ovary Syndrome

Abstract

The etiology of PCOS is multifactorial and complex, with abnormal ovarian steroidogenesis, hyperinsulinemia, and neuroendocrine abnormalities playing significant interactive roles. In women with PCOS, menstrual cycle dysfunction is accompanied by an increase in GnRH pulse frequency and overall amount, leading to greater LH secretion relative to that of FSH. Evidence suggests that women with PCOS are less sensitive to progesterone-induced slowing of GnRH pulse frequency and that androgens and hyperinsulinemia may mediate this effect. Both genetic and environmental factors impact the presentation and complications associated with PCOS. In particular, obesity attenuates the abnormal LH dynamics through associated factors that act directly at the pituitary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome: Rotterdam consensus workshop; Hum Reprod 2004; 19(1):41–7.

    Google Scholar 

  2. Welt CK, Gudmundsson JA, Arason G, Adams J, Palsdottir H, Gudlaugsdottir G, Ingadottir G, et al. Characterizing descrete subsets of polycystic ovary syndrome as defined by the Rotterdam Criteria: The impact of weight on phenotype and metabolic features. J Clin Endocrinol Metab. 2006;91:4842–8.

    Article  PubMed  CAS  Google Scholar 

  3. Dewailly D, Catteau-Jonard S, Reyss A, Leroy M, Pigny P. Oligoanovulation with polycystic ovaries but not overt hyperandrogenism. J Clin Endocrinol Metab. 2006;91:3922–7.

    Article  PubMed  CAS  Google Scholar 

  4. Legro RS, Driscoll D, Strauss III JF, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA. 1998;95:14956–60.

    Article  PubMed  CAS  Google Scholar 

  5. Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab. 2002;87:2128–33.

    Article  PubMed  CAS  Google Scholar 

  6. Franks S, Webber LJ, Goh M, Valentine A, White DM, Conway GS, Wiltshire S, et al. Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries. J Clin Endocrinol Metab. 2008;93:3396–402.

    Article  PubMed  CAS  Google Scholar 

  7. Hall JE. The Ovary, Infertility and Contraception. In: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J, editors. Harrison’s Principles of Internal Medicine. 18th ed. New York: McGraw-Hill; 2012. p. 3028–39.

    Google Scholar 

  8. Filicori M, Butler JP, Crowley Jr WF. Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion. J Clin Invest. 1984;73:1638–47.

    Article  PubMed  CAS  Google Scholar 

  9. Taylor AE, McCourt B, Martin MA, Anderson EJ, Adams JM, Schoenfeld D, Hall JE. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82:2248–56.

    Article  PubMed  CAS  Google Scholar 

  10. Kaiser UB, Sabbagh E, Katzenellenbogen R, Conn PM, Chin WW. A mechanism for the differential regulation of gonadotropin subunit gene expression by gonadotropin-releasing hormone. Proc Natl Acad Sci USA. 1995;92:12280–4.

    Article  PubMed  CAS  Google Scholar 

  11. Welt C, Pagan YL, Smith PC, Rado KB, Hall JE. Control of follicle-stimulating hormone by estradiol and the inhibins: critical role of estradiol at the hypothalamus during the luteal-follicular transition. J Clin Endocrinol Metab. 2003;88:1766–71.

    Article  PubMed  CAS  Google Scholar 

  12. Pagan YL, Srouji SS, Jimenez Y, Emerson A, Gill S, Hall JE. Inverse relationship between luteinizing hormone and body mass index in polycystic ovary syndrome: investigation of hypothalamic and pituitary contributions. J Clin Endocrinol Metab. 2006;91:1309–16.

    Article  PubMed  CAS  Google Scholar 

  13. Adams JM, Taylor AE, Crowley Jr WF, Hall JE. Polycystic ovarian morphology with regular ovulatory cycles: insights into the pathophysiology of polycystic ovarian syndrome. J Clin Endocrinol Metab. 2004;89:4343–50.

    Article  PubMed  CAS  Google Scholar 

  14. Waldstreicher J, Sandtoro NF, Hall JE, Filicor M, Crowley Jr WF. Hyperfunction of the hypothalamic–pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desenstization. J Clin Endocrinol Metab. 1988;66:165–72.

    Article  PubMed  CAS  Google Scholar 

  15. Dunaif A, Skully RE, Anderson RN, Chapin DS, Crowley Jr WF. The effects of continuous androgen secretion on the hypothalamic–pituitary axis in woman: evidence from a luteinized thecoma of the ovary. J Clin Endocrinol. 1984;59(3):389–93.

    Article  CAS  Google Scholar 

  16. Campo S. Ovulatory cycles, pregnancy outcome and complications after surgical treatment of polycystic ovary syndrome. Obstet Gynecol Survey. 1998;53(5):279–308.

    Article  Google Scholar 

  17. Finkelstein JS, Whitcomb RW, St. Lo’dea L, Longcope C, Schoenfeld D, Crowley Jr WF. Sex steroid control of gondaotropin secretion in the human male. I. Effects of testosterone administration in normal and gonadotropin-releasing hormone-deficient men. J Clin Endocrinol Metab. 1991;73(3):609–20.

    Article  PubMed  CAS  Google Scholar 

  18. Serafini P, Silva PD, Paulson RJ, Elkind-Hirsch K, Hernandez M, Lobo RA, et al. Acute modulation of the hypothalamic–pituitary axis by intravenous testosterone in normal women. Am J Obstet Gynecol. 1986;55:1288.

    Google Scholar 

  19. Vermesh M, Silva PD, Lobo RA. Endogenous opioids modulate the inhibitory effects of androgen on the hypothalamic–pituitary axis of normal women. J Clin Endocrinol Metab. 1987;65:1183.

    Article  PubMed  CAS  Google Scholar 

  20. Spinder T, Spijkstra JJ, Gooren LJ, Hompes PG, van Kessel H. Effects of long-term testosterone administration on gonadotropin secretion in agonadal female to male transsexuals compared with hypogonadal and normal women. J Clin Endocrinol Metab. 1989;68(1):200–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bashour NM, Wray S. P4 rapidly inhibits GnRH activity via PgRMC1. Endocrinology. 2012;153(9):4457–69.

    Article  PubMed  CAS  Google Scholar 

  22. Daniels TSL, Berga SL. Resistance of GnRH drive to sex steroid-induced suppression in hyperandrogenic anovulation. JCEM. 1997;82:4179–83.

    PubMed  CAS  Google Scholar 

  23. Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: evidence for reduced sensitivity of the GnRH pulse generator to inhibition by estradiol and progesterone. JCEM. 1998;83:582–90.

    PubMed  CAS  Google Scholar 

  24. Pieleck J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neurone firing activity in females and interfere with progesterone negative feedback. Endocrinology. 2006;147:1474–9.

    Article  Google Scholar 

  25. Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. JCEM. 2000;85:4047–52.

    PubMed  CAS  Google Scholar 

  26. Huang W, Acosta-Martínez M, Levine JE. Ovarian steroids stimulate adenosine triphosphate-sensitive potassium (KATP) channel subunits gene expression and confer responsiveness of gonadotropin-releasing hormone pulse generator to KATP channel modulation. Endocrinology. 2008;149:2423–32.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang C, Bosch MA, Levine JE, Rønnekleiv OK, Kelly MJ. Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. J Neurosci. 2007;27:10153–64.

    Article  PubMed  CAS  Google Scholar 

  28. Blank SK, McCartney CR, Chhabra S, Helm KD, Eagleson CA, Chang RJ, Marshall JC. Modulation of gonadotropin-releasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls—implications for regulation of pubertal maturation. J Clin Endocrinol Metab. 2009;94:2360–6.

    Article  PubMed  CAS  Google Scholar 

  29. Berga SL. Polycystic ovary syndrome: A model of combinatorial endocrinology. J Clin Endocrinol Metab. 2009;94(7):2250–1.

    Article  PubMed  CAS  Google Scholar 

  30. Eagleson CA, Bellows AB, Hu K, Gingrich MB, Marshall JC. Obese patients with polycystic ovary syndrome: Evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids. J Clin Endocrinol Metab. 2003;88:5158–62.

    Article  PubMed  CAS  Google Scholar 

  31. Arlt W, Auchus RJ, Miller WL. Thiazolidinediones but not metformin directly inhibit the steroidogenic enzymesP450c17 and 3_ -hydroxysteroid dehydrogenase. J Biol Chem. 2001;276:16767–71.

    Article  PubMed  CAS  Google Scholar 

  32. Azziz R, Ehrmann D, Legro RS, Whitcomb RW, Hanley R, Fereshetian AG, et al. PCOS/Troglitazone Study Group Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab. 2001;86:1626–32.

    Article  PubMed  CAS  Google Scholar 

  33. Brown J, Farquhar C, Beck J, Boothroyd C, Hughes E. Clomiphene and anti-oestrogens for ovulation induction in PCOS. Cochrane Database Syst Rev. 2009;4, CD002249.

    PubMed  Google Scholar 

  34. Casper RF, Mittwally MFM. Aromatase inhibitors for ovulation induction. J Clin Endocrinol Metab. 2006;91(3):760–71.

    Article  PubMed  CAS  Google Scholar 

  35. Nader S. Ovulation induction in polycystic ovary syndrome. Minerva Ginecol. 2008;60(1):53–61.

    PubMed  CAS  Google Scholar 

  36. Gill S, Taylor A, Martin KA, Welt C, Adams J, Hall JE. Predictive factors of the responsive to pulsatile GnRH therapy in polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86:2428–36.

    Article  PubMed  CAS  Google Scholar 

  37. Fulghesu AM, Villa P, Pavone V, Guido M, Apa R, Caruso A, et al. The impact of insulin secretion on the ovarian response to exogenous gonadotropins in polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82(2):644–8.

    Article  PubMed  CAS  Google Scholar 

  38. Abbott DH, Barnett DK, Levine JE, Padmanabhan V, Dumesic DA, Jacoris S, et al. Endocrine antecedents of polycystic ovary syndrome in fetal and infant prenatally androgenized female rhesus monkeys. Biol Reprod. 2008;79:154–63.

    Article  PubMed  CAS  Google Scholar 

  39. Foecking EM, Szabo M, Schwartz MB, Levine JE. Neuroendocrine consequences of prenatal androgen exposure in the female rat:absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod. 2005;72:1475–83.

    Article  PubMed  CAS  Google Scholar 

  40. Sharma TP, Herkimer C, West C, Ye W, Birch R, Robinson JE, et al. Fetal programming: prenatal androgen disrupts positive feedback actions of estradiol but does not affect timing of puberty in female sheep. Biol Reprod. 2002;66:924–33.

    Article  PubMed  CAS  Google Scholar 

  41. McGee WK, Bishop CV, Bahar A, Pohl CR, Chang RJ, Marshall JC, et al. Elevated androgens during puberty in female rhesus monkeys lead to increased neuronal drive to the reproductive axis: a possible component of polycystic ovary syndrome. Human Reprod. 2012;27(2):531–40.

    Article  CAS  Google Scholar 

  42. Hall JE, Sullivan JP, Richardson GS. Brief wake episodes modulate sleep-inhibited luteinizing hormone secretion in the early follicular phase. J Clin Endocrinol Metab. 2005;90:2050–5.

    Article  PubMed  CAS  Google Scholar 

  43. McCartney CR, Prendergast KA, Blank SK, Helm KD, Chhabra S, Marshall JC. Maturation of luteinizing hormone (gonadotropin-releasing hormone) secretion across puberty: evidence for altered regulation in obese peripubertal girls. J Clin Endocrinol Metab. 2009;94:56–66.

    Article  PubMed  CAS  Google Scholar 

  44. Grumbach MM. The neuroendocrinology of human puberty revisited. Horm Res. 2002;57 Suppl 2:2–14.

    Article  PubMed  CAS  Google Scholar 

  45. Wu FC, Butler GE, Kelnar CJ, Huhtaniemi I, Veldhuis JD. Ontogeny of pulsatile gonadotropin releasing hormone secretion from midchildhood, through puberty, to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. J Clin Endocrinol Metab. 1996;81:1798–805.

    Article  PubMed  CAS  Google Scholar 

  46. Ibanez L, de Zegher F, Potau N. Anovulation after precocious pubarche: early markers and time course in adolescence. J Clin Endocrinol Metab. 1999;84:2691–5.

    Article  PubMed  CAS  Google Scholar 

  47. Apter D, Butzow T, Laughlin GA, Yen SS. Accelerated 24-hour luteinizing hormone pulsatile activity in adolescent girls with ovarian hyperandrogenism: relevance to the developmental phase of PCOS. J Clin Endocrinol Metab. 1994;79:119–25.

    Article  PubMed  CAS  Google Scholar 

  48. Srouji SS, Pagan YL, D’Amato F, Dabela A, Jimenez Y, Supko JG, et al. Pharmacokinetic factors contribute to the inverse relationship between luteinizing hormone and body mass index in polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:1347–52.

    Article  PubMed  CAS  Google Scholar 

  49. Dunaif A. Insulin resistance and the polycystic ovarian syndrome: mechanism and implications for pathogeneiss. Endocr Rev. 1997;18:774–800.

    Article  PubMed  CAS  Google Scholar 

  50. Tosi F, Negri C, Perrone F, Dorizzi R, Castello R, Bonora E, et al. Hyperinsulinemia amplifies GnRH agonist stimulated ovarian steroid secretion in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2012;97:1712–9.

    Article  PubMed  CAS  Google Scholar 

  51. Navratil AM, Song H, Hernandez JB, Cherrington BD, Santos SJ, Low JM, et al. Insulin augments gonadotropin-releasing hormone induction of translation in LβT2 cells. Mol Cell Endocrinol. 2009 November 13;311(1–2):47–54.

    Article  CAS  Google Scholar 

  52. Burks DJ, Font de Mora J, Schubert M, Withers DJ, Myers MG, Towery HH, et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature. 2000;407:377–82.

    Article  PubMed  CAS  Google Scholar 

  53. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122–5.

    Article  PubMed  CAS  Google Scholar 

  54. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11:286–97.

    Article  PubMed  CAS  Google Scholar 

  55. Brothers KJ, Wu S, DiVall SA, Messmer MR, Kahn CR, Miller RS, et al. A rescue of obesity-induced infertility in female mice due to a pituitary-specific knockout of the insulin receptor. Cell Metab. 2010;12:295–305.

    Article  PubMed  CAS  Google Scholar 

  56. Lawson MA, Jain S, Sun S, Patel K, Malcolm PJ, Chang RJ. Evidence for insulin suppression of baseline luteinizing hormone in women with polycystic ovarian syndrome and normal women. J Clin Endocrinol Metab. 2008;93:2089–96.

    Article  PubMed  CAS  Google Scholar 

  57. Sprizer PM, Poy M, Wiltgen D, Mylius LS, Capp E. Leptin concentrations in hirsute women with polycystic ovarian syndrome or idiopathic hirsutism: influence on LH and relationship with hormonal, metabolic and anthropometric measurements. Hum Reprod. 2001;16:1340–6.

    Article  Google Scholar 

  58. Di Yorio MP, Bilbao MG, Pustovrh MC, Prestifilippo JP, Faletti AG. Leptin modulates the expression of its receptors in the hypothalamic–pituitary–ovarian axis in a differential way. J Endocrinol. 2008;198:355–66.

    Article  PubMed  Google Scholar 

  59. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.

    Article  PubMed  Google Scholar 

  60. Welt CK, Styrkarsdottir U, Ehrmann DA, Thorleifsson G, Arason G, Gudmundsson JA, et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J Clin Endocrinol Metab. 2012;97:E1342–7.

    Article  PubMed  CAS  Google Scholar 

  61. Marat AL, Dokainish H, McPherson PS. DENN domain proteins: regulators of Rab GTPases. J Biol Chem. 2011;286:13791–800.

    Article  PubMed  CAS  Google Scholar 

  62. Tasaka K, Masumoto N, Mizuki J, Ikebuchi Y, Ohmichi M, Kurachi H, et al. Rab3B is essential for GnRH-induced gonadotrophin release from anterior pituitary cells. J Endocrinol. 1998;157:267–74.

    Article  PubMed  CAS  Google Scholar 

  63. Mutharasan P, Galdones E, Peñalver Bernabé B, Garcia BA, Jafari N, et al. Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. J Clin Endocrinol Metab. 2013;98:E185–90.

    Article  PubMed  CAS  Google Scholar 

  64. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.

    Article  PubMed  CAS  Google Scholar 

  65. Cui L, Zhao H, Zhang B, Qu Z, Liu J, Liang X, et al. Genotype–phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum Repro. 2013;28(2):538–44.

    Article  CAS  Google Scholar 

  66. Liu N, Ma Y, Wang S, Zhang X, Zhang Q, Zhang X, et al. Association of the genetic variants of luteinizing hormone, luteinizing hormone receptor and polycystic ovary syndrome. Reprod Biol Endocrinol. 2012;10:36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet E. Hall M.Sc., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gill, S., Hall, J.E. (2014). The Hypothalamic–Pituitary Axis in PCOS. In: Pal, L. (eds) Polycystic Ovary Syndrome. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8394-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8394-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8393-9

  • Online ISBN: 978-1-4614-8394-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics