Skip to main content

Abstract

This chapter provides an introduction to treatment-planning procedures for stereotactic radiosurgery. The chapter begins with a brief history of the history of radiosurgery planning. Next, it covers the basic steps followed in the development of radiosurgery treatment plans including imaging, contouring, selection of plan parameters, and evaluating treatment plan quality. The chapter concludes with discussions of treatment planning for each of a number of specific delivery techniques including the Gamma Knife, linear accelerators, CyberKnife, and proton therapy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganz JC. Gamma knife surgery. 2nd ed. New York: Springer; 1997.

    Book  Google Scholar 

  2. Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–95.

    CAS  PubMed  Google Scholar 

  4. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.

    CAS  PubMed  Google Scholar 

  5. Wagner TH. Optimal delivery techniques for intracranial stereotactic radiosurgery using circular and multileaf collimators. Gainesville, FL: University of Florida; 2000.

    Google Scholar 

  6. Takeuchi H, Yoshida M, Kubota T, Ishii H, Sato K, Handa Y, et al. Frameless stereotactic radiosurgery with mobile CT, mask immobilization and micro-multileaf collimators. Minim Invasive Neurosurg. 2003;46(2):82–5.

    Article  CAS  PubMed  Google Scholar 

  7. Ryken TC, Meeks SL, Pennington EC, Hitchon P, Traynelis V, Mayr NA, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Radiat Oncol Biol Phys. 2001;51(4):1152–8.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy MJ, Cox RS. The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys. 1996;23(12):2043–9.

    Article  CAS  PubMed  Google Scholar 

  9. Murphy MJ, Chang SD, Gibbs IC, Le QT, Hai J, Kim D, et al. Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys. 2003;55(5):1400–8.

    Article  PubMed  Google Scholar 

  10. Kamath R, Ryken TC, Meeks SL, Pennington EC, Ritchie J, Buatti JM. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys. 2005;61(5):1467–72.

    Article  PubMed  Google Scholar 

  11. Gerszten PC, Ozhasoglu C, Burton SA, Vogel W, Atkins B, Kalnicki S, et al. Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg. 2003;81(1–4):84–9.

    Article  PubMed  Google Scholar 

  12. Bova FJ, Buatti JM, Friedman WA, Mendenhall WM, Yang CC, Liu C. The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys. 1997;38(4):875–82.

    Article  CAS  PubMed  Google Scholar 

  13. Meeks SL, Bova FJ, Wagner TH, Buatti JM, Friedman WA, Foote KD. Image localization for frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2000;46(5):1291–9.

    Article  CAS  PubMed  Google Scholar 

  14. Buatti JM, Bova FJ, Friedman WA, Meeks SL, Marcus Jr RB, Mickle JP, et al. Preliminary experience with frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1998;42(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gehring MA, Mackie TR, Kubsad SS, Paliwal BR, Mehta MP, Kinsella TJ. A three-dimensional volume visualization package applied to stereotactic radiosurgery treatment planning. Int J Radiat Oncol Biol Phys. 1991;21(2):491–500.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman WA, Bova FJ. The University of Florida radiosurgery system. Surg Neurol. 1989;32(5):334–42.

    Article  CAS  PubMed  Google Scholar 

  17. Coy SR, Houdek PV. Radiosurgery treatment planning. Semin Radiat Oncol. 1995;5(3):213–9.

    Article  PubMed  Google Scholar 

  18. Ferris MC, Lim J, Shepard DM. Radiosurgery treatment planning via nonlinear programming. Ann Oper Res. 2003;119:247–60.

    Article  Google Scholar 

  19. Ferris MC, Shepard DM. Optimization of gamma knife radiosurgery. In: Du DZ, Pardolas P, Wang J, editors. Discrete mathematical problems with medical applications. Providence, RI: AMS; 2000.

    Google Scholar 

  20. Flickinger JC, Lunsford LD, Wu A, Maitz AH, Kalend AM. Treatment planning for gamma knife radiosurgery with multiple isocenters. Int J Radiat Oncol Biol Phys. 1990;18(6):1495–501.

    Article  CAS  PubMed  Google Scholar 

  21. Luo L, Shu H, Yu W, Yan Y, Bao X, Fu Y. Optimizing computerized treatment planning for the Gamma Knife by source culling. Int J Radiat Oncol Biol Phys. 1999;45(5):1339–46.

    Article  CAS  PubMed  Google Scholar 

  22. Shepard DM, Ferris MC, Ove R, Ma L. Inverse treatment planning for Gamma Knife radiosurgery. Med Phys. 2000;27(12):2748–56.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Wu J, Dean D, Xing L, Xue J, Maciunas R, et al. Plug pattern optimization for gamma knife radiosurgery treatment planning. Int J Radiat Oncol Biol Phys. 2003;55(2):420–7.

    Article  PubMed  Google Scholar 

  24. Zhang P, Dean D, Metzger A, Sibata C. Optimization of Gamma knife treatment planning via guided evolutionary simulated annealing. Med Phys. 2001;28(8):1746–52.

    Article  CAS  PubMed  Google Scholar 

  25. Kubo HD, Pappas CT, Wilder RB. A comparison of arc-based and static mini-multileaf collimator-based radiosurgery treatment plans. Radiother Oncol. 1997;45(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  26. Podgorsak EB, Pike GB, Olivier A, Pla M, Souhami L. Radiosurgery with high energy photon beams: a comparison among techniques. Int J Radiat Oncol Biol Phys. 1989;16(3):857–65.

    Article  CAS  PubMed  Google Scholar 

  27. Alheit H, Dornfeld S, Dawel M, Alheit M, Henzel B, Steckler K, et al. Patient position reproducibility in fractionated stereotactically guided conformal radiotherapy using the BrainLab mask system. Strahlenther Onkol. 2001;177(5):264–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bourland JD, McCollough KP. Static field conformal stereotactic radiosurgery: physical techniques. Int J Radiat Oncol Biol Phys. 1994;28(2):471–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cardinale RM, Benedict SH, Wu Q, Zwicker RD, Gaballa HE, Mohan R. A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys. 1998;42(2):431–6.

    Article  CAS  PubMed  Google Scholar 

  30. Grebe G, Pfaender M, Roll M, Luedemann L, Wurm RE. Dynamic arc radiosurgery and radiotherapy: commissioning and verification of dose distributions. Int J Radiat Oncol Biol Phys. 2001;49(5):1451–60.

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton RJ, Kuchnir FT, Sweeney P, Rubin SJ, Dujovny M, Pelizzari CA, et al. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1995;33(5):1221–8.

    Article  CAS  PubMed  Google Scholar 

  32. Laing RW, Bentley RE, Nahum AE, Warrington AP, Brada M. Stereotactic radiotherapy of irregular targets: a comparison between static conformal beams and non-coplanar arcs. Radiother Oncol. 1993;28(3):241–6.

    Article  CAS  PubMed  Google Scholar 

  33. Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys. 1997;37(3):679–88.

    Article  CAS  PubMed  Google Scholar 

  34. Soanes T, Hampshire A, Vaughan P, Brownett C, Rowe J, Radatz M, et al. The commissioning and quality assurance of the Automatic Positioning System on the Leksell gamma knife. J Neurosurg. 2002;97(5 Suppl):574–8.

    PubMed  Google Scholar 

  35. Tsai JS, Engler MJ, Ling MN, Wu JK, Kramer B, Dipetrillo T, et al. A non-invasive immobilization system and related quality assurance for dynamic intensity modulated radiation therapy of intracranial and head and neck disease. Int J Radiat Oncol Biol Phys. 1999;43(2):455–67.

    Article  CAS  PubMed  Google Scholar 

  36. Tome WA, Meeks SL, Buatti JM, Bova FJ, Friedman WA, Li Z. A high-precision system for conformal intracranial radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1137–43.

    Article  CAS  PubMed  Google Scholar 

  37. Urie MM, Lo YC, Litofsky S, FitzGerald TJ. Miniature multileaf collimator as an alternative to traditional circular collimators for stereotactic radiosurgery and stereotactic radiotherapy. Stereotact Funct Neurosurg. 2001;76(1):47–62.

    Article  CAS  PubMed  Google Scholar 

  38. Haedinger U, Krieger T, Flentje M, Wulf J. Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets. Int J Radiat Oncol Biol Phys. 2005;61(1):239–49.

    Article  PubMed  Google Scholar 

  39. Chaves A, Lopes MC, Alves CC, Oliveira C, Peralta L, Rodrigues P, et al. A Monte Carlo multiple source model applied to radiosurgery narrow photon beams. Med Phys. 2004;31(8):2192–204.

    Article  CAS  PubMed  Google Scholar 

  40. Pike B, Peters TM, Podgorsak E, Pla C, Olivier A, de Lotbiniere A. Stereotactic external beam calculations for radiosurgical treatment of brain lesions. Appl Neurophysiol. 1987;50(1–6):269–73.

    CAS  PubMed  Google Scholar 

  41. Pike B, Podgorsak EB, Peters TM, Pla C. Dose distributions in dynamic stereotactic radiosurgery. Med Phys. 1987;14(5):780–9.

    Article  CAS  PubMed  Google Scholar 

  42. Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;18(4):941–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wu X, Ting JY, Markoe AM, Landy HJ, Fiedler JA, Russell J. Stereotactic dose computation and plan optimization using the convolution theorem. I. Dose computation. Stereotact Funct Neurosurg. 1996;66 Suppl 1:302–8.

    Article  PubMed  Google Scholar 

  44. Solberg TD, Holly FE, De Salles AA, Wallace RE, Smathers JB. Implications of tissue heterogeneity for radiosurgery in head and neck tumors. Int J Radiat Oncol Biol Phys. 1995;32(1):235–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kubsad SS, Mackie TR, Gehring MA, Misisco DJ, Paliwal BR, Mehta MP, et al. Monte Carlo and convolution dosimetry for stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;19(4):1027–35.

    Article  CAS  PubMed  Google Scholar 

  46. Dong L, Shiu A, Tung S, Hogstrom K. A pencil-beam photon dose algorithm for stereotactic radiosurgery using a miniature multileaf collimator. Med Phys. 1998;25(6):841–50.

    Article  CAS  PubMed  Google Scholar 

  47. Bardash M, Amols HI, Kohn S, Martel MK, Wuu CS, Sisti M, et al. Rapid dose calculations for stereotactic radiosurgery. Med Phys. 1992;19(4):965–70.

    Article  CAS  PubMed  Google Scholar 

  48. Ayyangar KM, Jiang SB. Do we need Monte Carlo treatment planning for linac based radiosurgery? A case study. Med Dosim. 1998;23(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  49. Verellen D, Linthout N, Bel A, Soete G, van den Berge D, D’Haens J, et al. Assessment of the uncertainties in dose delivery of a commercial system for linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1999;44(2):421–33.

    Article  CAS  PubMed  Google Scholar 

  50. Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys. 1998;40(2):497–505.

    Article  CAS  PubMed  Google Scholar 

  51. Smith V, Verhey L, Serago CF. Comparison of radiosurgery treatment modalities based on complication and control probabilities. Int J Radiat Oncol Biol Phys. 1998;40(2):507–13.

    Article  CAS  PubMed  Google Scholar 

  52. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231–9.

    Article  CAS  PubMed  Google Scholar 

  53. Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93 Suppl 3:219–22.

    PubMed  Google Scholar 

  54. Nedzi LA, Kooy HM, Alexander III E, Svensson GK, Loeffler JS. Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys. 1993;25(5):859–69.

    Article  CAS  PubMed  Google Scholar 

  55. Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys. 2003;55(5):1409–19.

    Article  PubMed  Google Scholar 

  56. Leung LH, Chua DT, Wu PM. A new tool for dose conformity evaluation of radiosurgery treatment plans. Int J Radiat Oncol Biol Phys. 1999;45(1):233–41.

    Article  CAS  PubMed  Google Scholar 

  57. Knoos T, Kristensen I, Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys. 1998;42(5):1169–76.

    Article  CAS  PubMed  Google Scholar 

  58. Borden JA, Mahajan A, Tsai JS. A quality factor to compare the dosimetry of gamma knife radiosurgery and intensity-modulated radiation therapy quantitatively as a function of target volume and shape. Technical note. J Neurosurg. 2000;93 Suppl 3:228–32.

    PubMed  Google Scholar 

  59. Elekta AB.

    Google Scholar 

  60. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  61. Cho PS, Kuterdem HG, Marks II RJ. A spherical dose model for radiosurgery plan optimization. Phys Med Biol. 1998;43(10):3145–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ma L, Yu CX, Earl M, Holmes T, Sarfaraz M, Li XA, et al. Optimized intensity-modulated arc therapy for prostate cancer treatment. Int J Cancer. 2001;96(6):379–84.

    Article  CAS  PubMed  Google Scholar 

  63. Kramer BA, Wazer DE, Engler MJ, Tsai JS, Ling MN. Dosimetric comparison of stereotactic radiosurgery to intensity modulated radiotherapy. Radiat Oncol Investig. 1998;6(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  64. Adler JR, Jr., Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery. 1999;44(6):1299–306; discussion 1306–7.

    Google Scholar 

  65. Chang SD, Murphy M, Geis P, Martin DP, Hancock SL, Doty JR, et al. Clinical experience with image-guided robotic radiosurgery (the Cyberknife) in the treatment of brain and spinal cord tumors. Neurol Med Chir (Tokyo). 1998;38(11):780–3.

    Article  CAS  Google Scholar 

  66. Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery. 2003;52(1):140–6; discussion 146–7.

    PubMed  Google Scholar 

  67. Heilbrun MP. Cyberknife radiosurgery: a practical guide. Sunnyvale, CA: The CyberKnife Society; 2003.

    Google Scholar 

  68. Mawad ME, Silver AJ, Hilal SK, Ganti SR. Computed tomography of the brain stem with intrathecal metrizamide. Part I: the normal brain stem. AJR Am J Roentgenol. 1983;140(3):553–63.

    Article  CAS  PubMed  Google Scholar 

  69. Sisterson J. Sponsored by the Particle Therapy Co-Operative Group (PTCOG). Particles Newsletter. 2005. p. 35.

    Google Scholar 

  70. Kahn FM. The physics of radiation therapy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  71. Slater J, Miller D, Archambeau J. Development of a hospital based Proton Therapy Center. Int J Radiat Oncol Biol Phys. 1988;14(4):761–75.

    Article  CAS  PubMed  Google Scholar 

  72. Flanz J, Bailey J, Bradley S, Goitein M, Gottschalk B, Jongen Y, et al. Recent performance of the NPTC equipment compared with the clinical specifications. In: Proceedings of 15th conference on the application of accelerators in research and industry. New York: AIP Press; 1999. p. 971–74.

    Google Scholar 

  73. Raju MR. Proton radiobiology, radiosurgery and radiotherapy. Int J Radiat Biol. 1995;67(3):237–59.

    Article  CAS  PubMed  Google Scholar 

  74. Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.

    Article  PubMed  Google Scholar 

  75. Chu W, Ludewigt B, Renner T. Instrumentation for treatment of cancer using proton and light-ion beams. Rev Sci Instrum. 1993;64(8):2055–122.

    Article  Google Scholar 

  76. Russell KR, Isacsson U, Saxner M, Ahnesjo A, Montelius A, Grusell E, et al. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys Med Biol. 2000;45(1):9–27.

    Article  CAS  PubMed  Google Scholar 

  77. Hong L, Goitein M, Bucciolini M, Comiskey R, Gottschalk B, Rosenthal S, et al. A pencil beam algorithm for proton dose calculations. Phys Med Biol. 1996;41(8):1305–30.

    Article  CAS  PubMed  Google Scholar 

  78. Gall KP, Verhey LJ, Wagner M. Computer-assisted positioning of radiotherapy patients using implanted radiopaque fiducials. Med Phys. 1993;20(4):1153–9.

    Article  CAS  PubMed  Google Scholar 

  79. Wells III WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996;1(1):35–51.

    Article  PubMed  Google Scholar 

  80. van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med Phys. 1994;21(7):1163–78.

    Article  PubMed  Google Scholar 

  81. Bussiere MR, Adams JA. Treatment planning for conformal proton radiation therapy. Technol Cancer Res Treat. 2003;2(5):389–99.

    Article  PubMed  Google Scholar 

  82. Product Genesis LLC. [cited]. Available from: www.productgenesis.com/

  83. General Atomics, Inc. [cited]. Available from: www.ga.com/

  84. Ion Beam Application S.A. [cited]. Available from: www.iba-worldwide.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Shepard Ph.D. .

Editor information

Editors and Affiliations

Glossary

Conformity index 

Defined by the RTOG as the volume of the prescription isodose divided by the target volume.

Constraint 

A condition that must be satisfied during inverse treatment planning for a plan to be considered feasible. The most basic constraint is that all beam weights must be nonnegative.

Dose-volume histogram (DVH) 

A plot of the volume versus dose used to analyze the dose distribution on a structure by structure basis.

Forward treatment planning 

An iterative approach to planning where the user manually changes each of the plan parameters until an acceptable plan is obtained.

Homogeneity index 

Defined by the RTOG as the maximum dose in the treatment volume divided by the prescription dose.

Inverse treatment planning 

An automated approach to planning where the user defines the treatment goals and an optimization algorithm is run that determines the parameters that best meet the goals.

Micromultileaf collimator (mMLC) 

A device attached to or incorporated into the head of a linear accelerator used to define field shapes. As compared with a conventional multileaf collimator (MLC), the leaves of an mMLC are less wide and project to 5 mm or less in width at the isocenter.

Objective function 

A scoring function that reduces the entire treatment plan into a single numerical value that is to be either minimized or maximized.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shepard, D.M., Yu, C., Murphy, M.J., Bussière, M., Bova, F.J. (2015). Treatment Planning for Stereotactic Radiosurgery. In: Chin, L., Regine, W. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8363-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8363-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8362-5

  • Online ISBN: 978-1-4614-8363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics