Skip to main content

Abstract

High-energy ionizing radiation is the tool of radiosurgery. Three major sources for radiosurgery are gamma rays from Cobalt-60 radioactive isotopes, X-ray beams from linear accelerators, and proton beams from charged particle accelerators. Both gamma and X-rays have the same physical characteristics (i.e., both are photons) and their interaction mechanism with material is stochastic. Three major photon interactions are photoelectric absorption, Compton scattering, and pair production. Protons are positively charged and continuously interact with material as they travel. While the dose deposited by photons drops off exponentially with penetration depth, the dose deposited by protons increases very slowly initially then sharply increases, reaching a maximum before rapidly dropping off to 0. Dose deposition characteristic determines fundamental treatment geometry needed. Three major photon beam delivery systems are Gamma Knife, CyberKnife, and conventional linear accelerator (LINAC). Among them, LINAC is the most popular machine and its major components are electron gun, accelerator tube, bending magnet, and treatment head. CyberKnife uses a compact linear accelerator mounted on a robot while Gamma Knife utilizes many Cobalt-60 sources. Beam size has been conventionally determined by a prefabricated circular collimator. However, use of multileaf collimator is increasing in LINAC. In recent Gamma Knife unit, automatic choice among four different collimator sizes (including zero size) is possible. CyberKnife also provides a continuously varying collimator in its latest version. A significantly large dose is delivered in radiosurgery. Therefore, the impact of inaccurate target localization or beam delivery can be disastrous. To minimize such disasters, radiosurgery quality assurance should be stringent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans RD. The atomic nucleus. Malabar, FL: Krieger; 1955.

    Google Scholar 

  2. Attix FH. Introduction to radiological physics and radiation dosimetry. New York: Wiley; 1986.

    Book  Google Scholar 

  3. Khan FM. The physics of radiation therapy. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1992.

    Google Scholar 

  4. Johns HE. The physics of radiology. 4th ed. Springfield, IL: Charles C. Thomas; 1983.

    Google Scholar 

  5. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–95.

    CAS  PubMed  Google Scholar 

  6. Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC, et al. Physics of Gamma Knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;18(4):941–9.

    Article  CAS  PubMed  Google Scholar 

  7. Simonova G, Novotny J, Novotny Jr J, Vladyka V, Liscak R. Fractionated stereotactic radiotherapy with the Leksell Gamma Knife: feasibility study. Radiother Oncol. 1995;37(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  8. Poffenbarger B. Viability of an isocentric cobalt-60 teletherapy unit for stereotactic radiosurgery. MSc Thesis. Montreal, Canada: McGill University; 1998.

    Google Scholar 

  9. Poffenbarger BA, Podgorsak EB. Viability of an isocentric cobalt-60 teletherapy unit for stereotactic radiosurgery. Med Phys. 1998;25(10):1935–43.

    Article  CAS  PubMed  Google Scholar 

  10. Bellerive MR, Kooy HM, Loeffler JS. Linac radiosurgery at the joint center for radiation therapy. Med Dosim. 1998;23(3):187–99.

    Article  CAS  PubMed  Google Scholar 

  11. Betti OO, Derechinsky VE. Hyperselective encelphalic irradiation with linear accelerator. Acta Neurochir Suppl. 1984;33:385–90.

    Google Scholar 

  12. Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, et al. External stereotactic irradiation by linear accelerator. Neurosurgery. 1985;16(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  13. Hamilton AJ, Lulu BA, Fosmire H, Stea B, Cassady JR. Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery. 1995;36(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  15. Larsson B. Dosimetry and radiobiology of protons as applied to cancer and neurosurgery. In: Thomas RH, Perez-Mendez V, editors. Advances in radiation protection and dosimetry in medicine. New York: Plenum; 1980. p. 367–94.

    Chapter  Google Scholar 

  16. Frankel KA, Phillips MH. Charged particle method: protons and heavy charged particles. In: Phillips MH, editor. Physical aspects of stereotactic radiosurgery. New York: Plenum; 1993.

    Google Scholar 

  17. Kjellberg RN, Shintani A, Frantz AG, Kliman B. Proton-beam therapy in acromegaly. N Engl J Med. 1968;278(13):689–95.

    Article  CAS  PubMed  Google Scholar 

  18. Larsson B, Leksell L, Rexed B, Sourander P, Mair W, Andersson B. The high-energy proton beam as a neurosurgical tool. Nature. 1958;182(4644):1222–3.

    Article  CAS  PubMed  Google Scholar 

  19. Breuer H, Smit BJ. Proton therapy and radiosurgery. Berlin: Springer; 2000.

    Book  Google Scholar 

  20. Wieszczycka W. Proton radiotherapy accelerators. Singapore: World Scientific Publishing; 2001.

    Book  Google Scholar 

  21. Karzmark CJ, Nunan CS, Tanabe E. Medical electron accelerators. New York: McGraw-Hill, Health Professions Division; 1993.

    Google Scholar 

  22. Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys. 1997;37(3):679–88.

    Article  CAS  PubMed  Google Scholar 

  23. Georg D, Knoos T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38(3):1280–93.

    Article  PubMed  Google Scholar 

  24. Arcovito G, Piermattei A, D’Abramo G, Bassi FA. Dose measurements and calculations of small radiation fields for 9-mv x rays. Med Phys. 1985;12(6):779–84.

    Article  CAS  PubMed  Google Scholar 

  25. Bova FJ. Radiation physics. Neurosurg Clin N Am. 1990;1(4):909–31.

    CAS  PubMed  Google Scholar 

  26. Houdek PV, VanBuren JM, Fayos JV. Dosimetry of small radiation fields for 10-mv x rays. Med Phys. 1983;10(3):333–6.

    Article  CAS  PubMed  Google Scholar 

  27. Rice RK, Hansen JL, Svensson GK, Siddon RL. Measurements of dose distributions in small beams of 6 mv x-rays. Phys Med Biol. 1987;32(9):1087–99.

    Article  CAS  PubMed  Google Scholar 

  28. Heydarian M, Hoban PW, Beddoe AH. A comparison of dosimetry techniques in stereotactic radiosurgery. Phys Med Biol. 1996;41(1):93–110.

    Article  CAS  PubMed  Google Scholar 

  29. Rustgi SN. Evaluation of the dosimetric characteristics of a diamond detector for photon beam measurements. Med Phys. 1995;22(5):567–70.

    Article  CAS  PubMed  Google Scholar 

  30. Vatnitsky S, Jarvinen H. Application of a natural diamond detector for the measurement of relative dose distributions in radiotherapy. Phys Med Biol. 1993;38(1):173–84.

    Article  CAS  PubMed  Google Scholar 

  31. Schell MC, Smith V, Larson DA, Wu A, Flickinger JC. Evaluation of radiosurgery techniques with cumulative dose volume histograms in linac-based stereotactic external beam irradiation. Int J Radiat Oncol Biol Phys. 1991;20(6):1325–30.

    Article  CAS  PubMed  Google Scholar 

  32. Serago CF, Houdek PV, Bauer-Kirpes B, Lewin AA, Abitbol AA, Gonzalez-Arias S, et al. Stereotactic radiosurgery: dose-volume analysis of linear accelerator techniques. Med Phys. 1992;19(1):181–5.

    Article  CAS  PubMed  Google Scholar 

  33. Giller CA, Fiedler JA, Gagnon GJ, Paddick I. Radiosurgical planning: gamma tricks and cyber picks. Hoboken, NJ: Wiley; 2011.

    Google Scholar 

  34. Friedman WA, Bova FJ. The University of Florida radiosurgery system. Surg Neurol. 1989;32(5):334–42.

    Article  CAS  PubMed  Google Scholar 

  35. Meeks SL, Bova FJ, Friedman WA, Buatti JM, Mendenhall WM. Linac scalpel radiosurgery at the University of Florida. Med Dosim. 1998;23(3):177–85.

    Article  CAS  PubMed  Google Scholar 

  36. Webb S. Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by a multileaf collimator. Phys Med Biol. 1991;36(9):1201–26.

    Article  CAS  PubMed  Google Scholar 

  37. Minniti G, Scaringi C, Clarke E, Valeriani M, Osti M, Enrici RM. Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes. Radiat Oncol. 2011;6:158.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Adler JR, Cox RS. Preliminary clinical experience with the cyberknife: image guided stereotactic radiosurgery. In: Kondziolka D, editor. Radiosurgery. Basel: Karger; 1995. p. 317–26.

    Google Scholar 

  39. Maciunas RJ, Fitzpatrick M, Galloway RL, Allen GS. Beyond stereotaxy: extreme levels of application accuracy are provided by implantable fiducial markers for interactive image-guided neurosurgery. In: Maciunas RJ, editor. Interactive image guided neurosurgery. Washington, DC: AANS; 1994. p. 261–70.

    Google Scholar 

  40. Echner GG, Kilby W, Lee M, Earnst E, Sayeh S, Schlaefer A, et al. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol. 2009;54(18):5359–80.

    Article  CAS  PubMed  Google Scholar 

  41. Ma L, Kwok Y, Chin LS, Yu C, Regine WF. Comparative analyses of linac and Gamma Knife radiosurgery for trigeminal neuralgia treatments. Phys Med Biol. 2005;50(22):5217–27.

    Article  CAS  PubMed  Google Scholar 

  42. Gerbi BJ, Higgins PD, Cho KH, Hall WA. Linac-based stereotactic radiosurgery for treatment of trigeminal neuralgia. J Appl Clin Med Phys. 2004;5(3):80–92.

    Article  PubMed  Google Scholar 

  43. Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys. 1998;40(2):497–505.

    Article  CAS  PubMed  Google Scholar 

  44. Plowman PN, Doughty D. Stereotactic radiosurgery, X: clinical isodosimetry of Gamma Knife versus linear accelerator X-knife for pituitary and acoustic tumours. Clin Oncol (R Coll Radiol). 1999;11(5):321–9.

    Article  CAS  Google Scholar 

  45. Perks JR, St George EJ, El Hamri K, Blackburn P, Plowman PN. Stereotactic radiosurgery XVI: isodosimetric comparison of photon stereotactic radiosurgery techniques (Gamma Knife vs. micromultileaf collimator linear accelerator) for acoustic neuroma–and potential clinical importance. Int J Radiat Oncol Biol Phys. 2003;57(5):1450–9.

    Article  PubMed  Google Scholar 

  46. Hartmann GH. Quality assurance program on stereotactic radiosurgery: report from a quality assurance task group. Berlin: Pringer; 1995.

    Book  Google Scholar 

  47. Schell MC, Bova FJ, Larson DA, Leavitt DD, Lutz WR, Podgorsak EB, et al. AAPM report no. 54. Stereotactic radiosurgery: report of task group 42 radiation therapy committee. Woodbury, NY: American Institute of Physics; 1995.

    Google Scholar 

  48. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231–9.

    Article  CAS  PubMed  Google Scholar 

  49. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, et al. American Association of Physicists in Medicine radiation therapy committee task group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25(10):1773–829.

    Article  CAS  PubMed  Google Scholar 

  50. Falco T, Lachaine M, Poffenbarger B, Podgorsak EB, Fallone BG. Setup verification in linac-based radiosurgery. Med Phys. 1999;26(9):1972–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyong Kim Ph.D. .

Editor information

Editors and Affiliations

Glossary

μSv

Microsievert, the SI unit for an equivalent radiation dose that accounts for biological effect.

AAPM

American Association of Physicists in Medicine.

Accelerator

A device that accelerates subatomic charged particles or nuclei to high energies.

Alpha particle

Positively charged particle consisting of two protons and two neutrons.

Beta particle

High-speed electron or positron.

Binding energy

Net energy required to remove an atomic electron from its orbit.

Bq

Becquerel, the Système International (SI) unit of radioactivity equal to one disintegration per second.

Bragg peak

Peak can be seen at the end of the depth dose curve of heavy charged particles such as a proton.

BTS

Beam transport system, a proton accelerator system that carries the protons exiting the accelerator to the patient site.

Cavity

A device through which power is coupled to the accelerating particles in a resonant mode.

Ci

Curie, unit of radioactivity equal to 3.7 × 1010 disintegrations per second.

Collimator

A device capable of collimating radiation.

CT

Computed tomography.

Cyclotron

A particle accelerator in which charged particles are accelerated in a circular path by an alternating electric field in a constant magnetic field.

DD

Depth dose, relative dose level according to the depth of the material when the radiation beam is incident.

Dipole

A pair of electric charges or magnetic poles.

Dose

Energy absorbed per unit mass by radiation.

DVH

Dose–volume histogram, accumulated volume according to dose for a volume of interest.

FF

Flattening filter.

FFF

Flattening filter free.

Filter

A device used to modify the intensity of radiation.

FWHM

Full width at half maximum.

Gamma particle

Electromagnetic radiation particle (photon) emitted by radioactive decay.

Gy

Gray, a unit of dose equivalent to joules per kilogram.

Half-life

Length of time needed for a radioactive substance to lose half of its radioactivity from decay.

Ionization chamber

A chamber for determining the intensity of ionizing radiation by measuring ionization of the enclosed gas.

Ionizing radiation

Electromagnetic or particulate radiation capable of producing ions in its passage through matter.

IMRT

Intensity modulated radiation therapy.

IMSR

Intensity modulated stereotactic radiosurgery, a treatment technique in which radiation intensity is modulated within a field to obtain an optimized dose distribution.

IRIS

A variable aperture collimator in CyberKnife system.

Isocenter

A point in the space that is the center of rotation of the gantry, collimator, and table of an isocentric medical linear accelerator.

Isodose line

A line made by connecting all points of the same dose.

Kernel

A function that describes how the dose is distributed within a medium.

keV

Kiloelectron volts, a unit of energy of particles.

Klystron

A microwave amplifier.

Linear accelerator

A particle accelerator in which the path of the particles is straight.

mA

Milliampere, a unit of electric current.

Magnetron

A diode-type electron tube that generates microwave pulses.

MeV

Million electron volts, a unit of energy of particles.

mMLC

Micro-multileaf collimator, a special collimator consisting of many small collimator leaves that can be individually moved to conform to the shape of the target.

mR

Milliroentgen, a unit of exposure.

MV

Million volts, a unit of beam quality of radiation therapy beams produced in linear accelerators.

OAR

Off-axis ratio, relative dose distribution following a line on a plane normal to the direction of the radiation beam, same as profile.

Output

Magnitude of radiation produced.

PDD

Percent depth dose, relative dose level in percentile according to the depth of the material when the radiation beam is incident.

Photon

Quantum of electromagnetic energy with no mass and charge considered to be both particle and wave.

Positron

Positively charged particle of the same mass and magnitude of charge as an electron.

Profile

Relative dose distribution following a line on a plane normal to the direction of radiation beam, same as the OAR.

Proton

Stable and positively charged subatomic particle.

QA

Quality assurance.

Radioactive decay

Spontaneous disintegration of a radionuclide followed by the emission of ionizing radiation in the form of alpha, beta, or gamma particles.

Radioactivity

Capability of radioactive decay.

Radioisotope

Naturally or artificially produced radioactive isotope of an element.

Range

Distance charged particles can travel.

Resonance

Condition of being resonant in which an increase in the amplitude of a physical quantity can occur.

RF

Radiofrequency, a range of electromagnetic frequencies above sound and below visible light.

SBRT

Stereotactic body radiotherapy.

SRS

Stereotactic radiosurgery.

SRT

Stereotactic radiotherapy.

Synchrotron

A particle accelerator in which charged particles are accelerated around a fixed circular path by an electric field and held to the path by an increasing magnetic field.

TERMA

Total energy released per unit mass, amount of energy released from radiation to the unit mass of the interaction material.

Z

Atomic number; that is, the number of protons in an element.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, S., Palta, J. (2015). The Physics of Stereotactic Radiosurgery. In: Chin, L., Regine, W. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8363-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8363-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8362-5

  • Online ISBN: 978-1-4614-8363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics