Skip to main content

Abstract

Novel physiologic MRI and metabolic PET imaging provides the ability to analyze tumor tissue properties including tumor vasculature, vascular permeability, tumor cellularity, hypoxia, and tumor proliferation. Stereotactic radiosurgery (SRS) involves the delivery of a very precise, focal dose of radiation to a target. It is important to understand the radiological principles behind the various imaging modalities and their application in SRS. Recent advances in MR imaging have the potential to improve accuracy for target volume delineation and therefore outcome for intracranial tumors. Novel imaging techniques may also be used in subsequent posttreatment follow-up to distinguish between tumor recurrences versus nonneoplastic treatment-related changes. Imaging modalities discussed in this chapter include conventional MRI, MR diffusion-weighted imaging, MR perfusion imaging, dynamic contrast-enhanced MRI, MR spectroscopy, metabolic PET, and cerebral angiography. This chapter illustrates the utility of these imaging modalities in the SRS treatment and posttreatment follow-up of both malignant and benign intracranial tumors including brain metastases, recurrent glioma, arteriovenous malformations, meningiomas, and vestibular schwannomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petti PL, Kessler ML, Fleming T, Pitluck S, et al. An automated image-registration technique based on multiple structure matching. Med Phys. 1994;21(9):1419–26.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang B, MacFadden D, Damyanovich AZ, Rieker M, Stainsby J, Bernstein M, Jaffray DA, Mikulis D, Menard C. Development of a geometrically accurate imaging protocol at 3T MRI for SRS treatment planning. Phys Med Biol. 2010;55(22):6601–15.

    Article  CAS  PubMed  Google Scholar 

  3. Pinnaduwage D. MRI-based simulation and treatment planning: are we there yet? [Internet]. 2012 [updated 2012 Mar 17, cited 2013 Jan 22]. Available from: http://www.ucsfcme.com/2012/slides/MRO12001/16PinnaduwageMRSimulationAndPlanningAreWeThereYet.pdf.

  4. Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011;38(5):2708–14.

    Article  PubMed  Google Scholar 

  5. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51(5):812–8.

    Article  PubMed  Google Scholar 

  6. Wang H, Balter J, Cao Y. Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner. Phys Med Biol. 2013;58(3):465–77.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  8. Flickinger JC, Kondiolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R, Pollock B. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Int J Radiat Oncol Biol Phys. 2000;46(5):1143–8.

    Article  CAS  PubMed  Google Scholar 

  9. Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander 3rd E, Kooy HM, Flickinger JC. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  10. Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  11. Morita A, Coffey RJ, Foote RL, Schiff D, Gorman D. Risk of injury to cranial nerves after gamma knife radiosurgery for skull base meningiomas: experience in 88 patients. J Neurosurg. 1999;90(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  12. Foote KD, Friedman WA, Buatti JM, Meeks SL, Bova FJ, Kubilis PS. Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg. 2001;95(3):440–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cao Y, Sundgren PC, Tsien CI, Chenevert TT, Junck L. Physiologic and metabolic magnetic resonance imaging in gliomas. J Clin Oncol. 2006;24(8):1228–35.

    Article  PubMed  Google Scholar 

  14. Zakian KL, Koutcher JA, Ballon D, Hricak H, Ling CC. Developments in nuclear magnetic resonance imaging and spectroscopy: application to radiation oncology. Semin Radiat Oncol. 2001;11(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson SJ. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther. 2003;2(5):497–507.

    CAS  PubMed  Google Scholar 

  16. Pardo FS, Aronen HJ, Kennedy D, Moulton G, Paiva K, Okunieff P, Schmidt EV, Hochberg FH, Harsh GR, Fischman AJ. Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant glioma. Int J Radiat Oncol Biol Phys. 1994;30(3):663–9.

    Article  CAS  PubMed  Google Scholar 

  17. Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008;249(2):601–13.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Maeda M, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, Ishii Y, Kubota T. Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology. 1993;189(1):233–8.

    Article  CAS  PubMed  Google Scholar 

  19. Thomsen H, Steffensen E, Larsson EM. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas. Acta Radiol. 2012;53(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with Histologic grade. AJNR Am J Neuroradiol. 2000;21(5):891–9.

    CAS  PubMed  Google Scholar 

  21. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol. 2002;178(3):711–6.

    Article  PubMed  Google Scholar 

  22. Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, Horsfield MA, Mross K, Ball HA, Lee L, Mietlowski W, Fuxuis S, Unger C, O’Byrne K, Henry A, Cherryman GR, Laurent D, Dugan M, Marme D, Steward WP. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003;21(21):3955–64.

    Article  CAS  PubMed  Google Scholar 

  23. Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med. 1996;2(3):323–5.

    Article  CAS  PubMed  Google Scholar 

  24. Wald LL, Nelson SJ, Day MR, Noworolski SE, Henry RG, Huhn SL, Chang S, Prados MD, Sneed PK, Larson DA, Wara WM, McDermott M, Dillon WP, Gutin PH, Vigneron DB. Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg. 1997;87(4):525–34.

    Article  CAS  PubMed  Google Scholar 

  25. Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerschap A, Kamada K, Lee BC, Mengeot MM, Moser E, Padavic-Schaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg. 1996;84(3):449–58.

    Article  CAS  PubMed  Google Scholar 

  26. Einstein DB, Wessels B, Bangert B, Fu P, Nelson AD, Cohen M, Sagar S, Lewin J, Sloan A, Zheng Y, Williams J, Colussi V, Vinkler R, Maciunas R. Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2012;84(3):668–74.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Huang J, Wang AM, Shetty A, Maitz AH, Yan D, Doyle D, Richey K, Park S, Pieper DR, Chen PY, Grills IS. Differentiation between intra-axial metastatic tumor progression and radiation injury following fractionated radiation therapy or stereotactic radiosurgery using MR spectroscopy, perfusion MR imaging or volume progression modeling. Magn Reson Imaging. 2011;29(7):993–1001.

    Article  PubMed  Google Scholar 

  28. Weybright P, Sundgren PC, Maly PV, Hassan DG, Nan B, Rohrer S, Junck L. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol. 2005;185(6):1471–6.

    Article  PubMed  Google Scholar 

  29. Hamstra DA, Galban CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien C, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, Ross BD, Chenevert TL. Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol. 2008;26(20):3387–94.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Galban CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, Hamstra DA, Junck L, Sundgren PC, Johnson TD, Ross DJ, Rehemtulla A, Ross BD. The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med. 2009;15(5):572–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q, Tsien C, Mukherji S, Quint DJ, Gebarski SS, Robertson PL, Junck LR, Rehemtulla A, Ross BD. Physiologic diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A. 2005;102(15):5524–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Malyarenko D, Galban CJ, Londy FJ, Meyer C, Johnson TD, Rehemtulla A, Ross BD, Chenevert TL. Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging. 2013;37(5): 1238–46.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junck L, Cao Y. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys. 2008;70(4):1002–2010.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Chapman CH, Nagesh V, Sundgren PC, Buchtel H, Chenevert TL, Junck L, Lawrence TS, Tsien CI, Cao Y. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. Int J Radiat Oncol Biol Phys. 2012;82(5):2033–40.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nazem-Zadeh MR, Jafari-Khouzani K, Davoodi-Bojd E, Jiang Q, Soltanian-Zadeh H. Clustering method for estimating principal diffusion directions. Neuroimage. 2011;57(3):825–38.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Yen PS, Teo BT, Chiu CH, Chen SC, Chiu TL, Su CF. White Matter tract involvement in brain tumors: a diffusion tensor imaging analysis. Surg Neurol. 2009;72(5):464–9.

    Article  PubMed  Google Scholar 

  37. Pantelis E, Papadakis N, Verigos K, Stathochristopoulou I, Antypas C, Lekas L, Tzouras A, Georgiou E, Salvaras N. Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys. 2010;78(1):257–67.

    Article  PubMed  Google Scholar 

  38. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  39. Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO. 3’-deoxy-3’-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. 2003;63(13):3791–8.

    CAS  PubMed  Google Scholar 

  40. Grosu AL, Feldmann H, Dick S, Dzewas B, Nieder C, Gumprecht H, Frank A, Schwaiger M, Molls M, Weber WA. Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Biol Phys. 2002;54(3):842–54.

    Article  PubMed  Google Scholar 

  41. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S. Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med. 2005;19(8):677–83.

    Article  PubMed  Google Scholar 

  42. Sato N, Suzuki M, Kuwata N, Kuroda K, Wada T, Beppu T, Sera K, Sasaki T, Ogawa A. Evaluation of the malignancy of glioma using 11C-Methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev. 1999;22(4):210–4.

    Article  CAS  PubMed  Google Scholar 

  43. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, Fariselli L, Tzuk-Shina T, Kortmann RD, Carrie C, Ben Hassel M, Kouri M, Valeinis E, van den Berge D, Collette S, Collette L, Mueller RP. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J Clin Oncol. 2011;29(2):134–41.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Baumert BG, Rutten I, Dehing-Oberije C, Twijnstra A, Dirx MJ, Debougnoux-Huppertz RM, Lambin P, Kubat B. A pathology-based substrate for target definition in radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys. 2006;66(1):187–94.

    Article  PubMed  Google Scholar 

  45. Noel G, Simon JM, Valery CA, Cornu P, Boisserie G, Hasboun D, Ledu D, Tep B, Delattre JY, Marsault C, Baillet F, Mazeron JJ. Radiosurgery for brain metastasis: impact of CTV on local control. Radiother Oncol. 2003;68(1):15–21.

    Article  PubMed  Google Scholar 

  46. Robbins JR, Ryu S, Kalkanis S, Cogan C, Rock J, Movsas B, Kim JH, Rosenblum M. Radiosurgery to the surgical cavity as adjuvant therapy for resected brain metastasis. Neurosurgery. 2012;71(5): 937–43.

    Article  PubMed  Google Scholar 

  47. Atalar B, Choi CY, Harsh 4th GR, Chang SD, Gibbs IC, Adler JR, Soltys SG. Cavity volume dynamics after resection of brain metastases and timing of postresection cavity stereotactic radiosurgery. Neurosurgery. 2013;72(2):180–5.

    Article  PubMed  Google Scholar 

  48. Soltys SG, Adler JR, Lipani JD, Jackson PS, Choi CY, Puataweepong P, White S, Gibbs IC, Chang SD. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases. Int J Radiat Oncol Biol Phys. 2008;70(1):187–93.

    Article  PubMed  Google Scholar 

  49. Huang CF, Chou HH, Yang MS, Lee JK, Lin LY. Diffusion magnetic resonance imaging as an evaluation of the response of brain metastases treated by stereotactic radiosurgery. Surg Neurol. 2008;69(1):62–8.

    Article  PubMed  Google Scholar 

  50. Huang CF, Chiou SY, Wu MF, Tu HT, Liu WS, Chuang JC. Apparent diffusion coefficients for evaluation of the response of brain tumors treated by Gamma Knife surgery. J Neurosurg. 2010;113(Suppl): 97–104.

    PubMed  Google Scholar 

  51. Goldman M, Boxerman JL, Rogg JM, Noren G. Utility of apparent diffusion coefficient in predicting the outcome of Gamma Knife-treated brain metastases prior to changes in tumor volume: a preliminary study. J Neurosurg. 2006;105(Suppl):175–82.

    PubMed  Google Scholar 

  52. Farjam R, Tsien CI, Feng FY, Gomez-Hassan D, Hayman JA, Lawrence TS, Cao Y. Physiological imaging-defined response-driven subvolumes of a tumor. Int J Radiat Oncol Biol Phys. 2013;85(5):1383–90.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol. 1988;150(1):189–97.

    Article  PubMed  Google Scholar 

  54. Kim EE, Chung S-K, Haynie TP, Kim CG, Cho BJ, Podoloff DA, Tilbury RS, Yang DJ, Yung WK, Moser Jr RP, et al. Differentiation of residual or recurrent tumors from post-treatment changes in F-18 FDG-PET. Radiographics. 1992;12(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  55. Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H, Murakami M, Uemura K, Yasui N, Mineura K. Clinical value of PET with [18F]fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol. 1991;32(3):197–202.

    Article  CAS  PubMed  Google Scholar 

  56. Thompson TP, Lunsford LD, Kondziolka D. Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg. 1999;73(1–4):9–14.

    Article  CAS  PubMed  Google Scholar 

  57. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, Otsuka Y, Sakamoto S, Ohata K, Goto T, Hara M. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg. 2003;98(5):1056–64.

    Article  PubMed  Google Scholar 

  58. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49(5):694–9.

    Article  PubMed  Google Scholar 

  59. Cuneo KC, Vredenburgh JJ, Sampson JH, Reardon DA, Desjardins A, Peters KB, Friedman HS, Willett CG, Kirkpatrick JP. Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys. 2012;82(5):2018–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Li X, Lu Y, Pirzkall A, McKnight T, Nelson SJ. Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging. 2002;16(3):229–37.

    Article  PubMed  Google Scholar 

  61. Pirzkall A, Li X, Oh J, Chang S, Berger MS, Larson DA, Verhey LJ, Dillon WP, Nelson SJ. 3D MRSI for resected high-grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI. Int J Radiat Oncol Biol Phys. 2004;59(1):126–37.

    Article  PubMed  Google Scholar 

  62. Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP, Mikkelsen T. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery. 2001;49(4):823–9.

    CAS  PubMed  Google Scholar 

  63. Chan AA, Lau A, Pirzkall A, Chang SM, Verhey LJ, Larson D, McDermott MW, Dillon WP, Nelson SJ. Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg. 2004;101(3):467–75.

    Article  PubMed  Google Scholar 

  64. Burtscher IM, Skagerberg G, Geijer B, Burtscher IM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol. 2000;21(1):84–93.

    CAS  PubMed  Google Scholar 

  65. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, Coons SW, Nakaji P, Yeh RF, Debbins J, Heiserman JE. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from post-treatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.

    Article  CAS  PubMed  Google Scholar 

  66. Meijer OW, Vandertop WP, Baayen JC, Slotman BJ. Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study. Int J Radiat Oncol Biol Phys. 2003;56(5):1390–6.

    Article  CAS  PubMed  Google Scholar 

  67. Chopra R, Kondziolka D, Niranjan A, Lunsford LD, Flickinger JC. Long-term follow-up of acoustic schwannoma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol Biol Phys. 2007;68(3):845–51.

    Article  PubMed  Google Scholar 

  68. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro Oncol. 2012;14(1):87–92.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Nagano O, Serizawa T, Higuchi Y, Matsuda S, Sato M, Yamakami I, Okiyama K, Ono J, Saeki N. Tumor shrinkage of vestibular schwannomas after Gamma Knife surgery: results after more than 5 years of follow-up. J Neurosurg. 2010;113(Suppl):122–7.

    PubMed  Google Scholar 

  70. Han JH, Kim DG, Chung HT, Paek SH, Park CK, Kim CY, Hwang SS, Park JH, Kim YH, Kim JW, Kim YH, Song SW, Kim IK, Jung HW. The risk factors of symptomatic communicating hydrocephalus after stereotactic radiosurgery for unilateral vestibular schwannoma: the implication of brain atrophy. Int J Radiat Oncol Biol Phys. 2012;84(4):937–42.

    Article  PubMed  Google Scholar 

  71. Dhople AA, Adams JR, Maggio WW, Naqvi SA, Regine WF, Kwok Y. Long-term outcomes of Gamma Knife radiosurgery for classic trigeminal neuralgia: implications of treatment and critical review of the literature. J Neurosurg. 2009;111(2):351–8.

    Article  PubMed  Google Scholar 

  72. Regis J, Metellus P, Hayashi M, Roussel P, Donnet A, Bille-Turc F. Prospective controlled trial of gamma knife surgery for essential trigeminal neuralgia. J Neurosurg. 2006;104(6):913–24.

    Article  PubMed  Google Scholar 

  73. Massager N, Abeloos L, Devriendt D, Op de Beeck M, Levivier M. Clinical evaluation of targeting accuracy of gamma knife radiosurgery in trigeminal neuralgia. Int J Radiat Oncol Biol Phys. 2007;69(5):1514–20.

    Article  PubMed  Google Scholar 

  74. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D. Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke. 1996;27(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  75. Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery. 1994;34(1): 14–20.

    Article  CAS  PubMed  Google Scholar 

  76. Ellis TL, Friedman WA, Bova FJ, Kubilis PS, Buatti M. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  77. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. An analysis of the dose-reponse for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002; 63(3):347–54.

    Article  PubMed  Google Scholar 

  78. Maruyama K, Kawahara N, Shin M, Tago M, Kishimoto J, Kurita H, Kawamoto S, Morita A, Kirino T. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005;352(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  79. Kondziolka D, Lundsford LD, Flickinger JC. Gamma knife stereotactic radiosurgery for cerebral vascular malformations. In: Aleksander E, Loeffler JS, Lundsford LD, editors. Stereotactic radiosurgery. New York: McGraw-Hill; 1993. p. 136–46.

    Google Scholar 

  80. Colombo F, Benedetti A, Pozza F, Marchetti C, Chierego G. Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery. 1989;24(6):833–40.

    Article  CAS  PubMed  Google Scholar 

  81. Spiegelmann R, Friedman WA, Bova FJ. Limitations of angiographic target localization in planning radiosurgical treatment. Neurosurgery. 1992;30(4):619–23.

    Article  CAS  PubMed  Google Scholar 

  82. Kondziolka D, Lunsford LD, Kanal E, Talagala L. Stereotactic magnetic resonance angiography for targeting in arteriovenous malformation radiosurgery. Neurosurgery. 1994;35(4):585–90.

    Article  CAS  PubMed  Google Scholar 

  83. Gemmete JJ, Chaudhary N, Pandey AS, Oweis Y, Thompson BG, Maher CO, Gandhi D, Ansari SA. Initial experience with a combined multidetector CT and biplane digital subtraction angiography suite with a single interactive table for the diagnosis and treatment of neurovascular disease. J Neurointerv Surg. 2013;5(1): 73–80.

    Article  PubMed  Google Scholar 

  84. Stancanello J, Cavedon C, Francescon P, Causin F, Avanzo M, Colombo F, Cerveri P, Ferrigno G, Uggeri F. BOLD fMRI integration into radiosurgery treatment planning of cerebral vascular malformations. Med Phys. 2007;34(4):1176–84.

    Article  PubMed  Google Scholar 

  85. Koga T, Maruyama K, Kamada K, Ota T, Shin M, Itoh D, Kunii N, Ino K, Terahara A, Aoki S, Masutani Y, Saito N. Outcomes of diffusion tensor tractography-integrated stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(2):799–802.

    Article  PubMed  Google Scholar 

  86. Guo WY, Wu YY, Wu HM, Chung WY, Kao YH, Yeh TC, Shiau CY, Pan DH, Chang YC, Hsieh JC. Toward normal perfusion after radiosurgery: perfusion MR imaging with independent component analysis of brain arteriovenous malformations. AJNR Am J Neuroradiol. 2004;25(10):1636–44.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina I. Tsien M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, J. et al. (2015). Imaging Techniques in Stereotactic Radiosurgery. In: Chin, L., Regine, W. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8363-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8363-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8362-5

  • Online ISBN: 978-1-4614-8363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics