Skip to main content

Distance-Based Partial Least Squares Analysis

  • Conference paper
  • First Online:
New Perspectives in Partial Least Squares and Related Methods

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 56))

Abstract

Distances matrices are traditionally analyzed with statistical methods that represent distances as maps such as Metric Multidimensional Scaling (mds), Generalized Procrustes Analysis (gpa), Individual Differences Scaling (indscal), and distatis. Mds analyzes only one distance matrix at a time while gpa, indscal and distatis extract similarities between several distance matrices. However, none of these methods is predictive. Partial Least Squares Regression (plsr) predicts one matrix from another, but does not analyze distance matrices. We introduce a new statistical method called Distance-based Partial Least Squares Regression (displsr), which predicts one distance matrix from another. We illustrate displsr with data obtained from a neuroimaging experiment, which explored semantic categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Abdi, “Metric multidimensional scaling,” in Encyclopedia of Measurement and Statistics, N. J. Salkind, ed., pp. 598–605, Thousand Oaks (CA): Sage, 2007.

    Google Scholar 

  2. W. S. Torgerson, “Multidimensional scaling: I. Theory and method,” Psychometrika 17, pp. 401–419, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Gower and G. Dijksterhuis, Procrustes Problems, New York: Oxford University Press, 2004.

    Book  MATH  Google Scholar 

  4. J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition,” Psychometrika 35, pp. 283–319, 1970.

    Article  MATH  Google Scholar 

  5. H. Abdi, D. Valentin, A. J. O’Toole, and B. Edelman, “Distatis: The analysis of multiple distance matrices,” in Proceedings of the ieee Computer Society: International Conference on Computer Vision and Pattern Recognition, pp. 43–47, 2005.

    Google Scholar 

  6. H. Abdi, J.P. Dunlop, and L.A. Williams, “How to compute reliability estimates and display confidence and tolerance intervals for pattern classiffiers using the Bootstrap and 3-way multidimensional scaling Distatis,” in NeuroImage 17, pp. 89–95, 2009.

    Article  Google Scholar 

  7. H. Abdi, D. Valentin, S. Chollet, and C. Chrea, “ Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications,” in Food Quality and Preference, 18, pp. 627–640, 2007.

    Article  Google Scholar 

  8. A. Krishnan, L. J. Williams, A. R. McIntosh, and H. Abdi, “Partial least squares (pls) methods for neuroimaging: A tutorial and review,” NeuroImage 56, pp. 455–475, 2011.

    Article  Google Scholar 

  9. L.R., Tucker, “An inter-battery method of factor analysis.” Psychometrika 23, pp. 111–136, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  10. F.L. Bookstein, P.L. Sampson, A.P. Streissguth, and H.M. Barr, “Exploting redundant measurements of dose and developmental outcome: New methods from the behavioral teratology of alcohol,” Developmental Psychology 32, pp. 404–415, 1996.

    Article  Google Scholar 

  11. P.D. Sampson, A.P. Streissguth, H.M. Barr, and F.S.Bookstein, “Neurobehavioral effect of prenatal alcohol: Part II, partial least square analysis,” Neurotoxicology and Teratology 11, pp. 477–491.

    Google Scholar 

  12. A. Tishler, D. Dvir, A. Shenhar, and S. Lipovetsky, “Identifying critical success factors in defense development projects: A multivariate analysis,” Technological Forecasting and Social Change 51, pp. 151–171, 1996.

    Article  Google Scholar 

  13. A. Tishler, and S. Lipovetsky, “Modelling and forecasting with robust canonical analysis: method and application,” Computers and Operations Research 27, pp. 217–232, 2000.

    Article  MATH  Google Scholar 

  14. S. Dolédec, and D. Chessel, “Co-inertia analysis: an alernative methods for studying sepcies-environment relationships.” Fresehwater Biology 31, pp. 277–294.

    Google Scholar 

  15. H. Abdi, “Partial least squares regression and projection on latent structure regression (PLS Regression),” WIREs Computational Statistics 2, pp. 97–106, 2010.

    Article  Google Scholar 

  16. H. Wold, “Soft modelling: The basic design and some extensions,” in Systems under indirect observation: Causality-structure-prediction Part II, K. Jöreskog and H. Wold, eds., pp. 1–54, Amsterdam: North-Holland Publishing Company, 1982.

    Google Scholar 

  17. S. Wold, M. Sjöström, and L. Eriksson, “Pls-regression: A basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems 58, pp. 109–130, 2001.

    Article  Google Scholar 

  18. H. Abdi, “Singular value decomposition (svd) and generalized singular value decomposition (gsvd),” in Encyclopedia of Measurement and Statistics, N. Salkind, ed., pp. 907–912, Thousand Oaks (CA): Sage, 2007.

    Google Scholar 

  19. M. Greenacre, Theory and Applications of Correspondence Analysis, Academic Press, London, 1984.

    MATH  Google Scholar 

  20. H. Yanai, K. Takeuchi, and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition, New York, Springer, 2011.

    Book  MATH  Google Scholar 

  21. B. L. Bush and R. B. Nachbar, Jr., “Sample-distance partial least squares: pls optimized for many variables, with application to comfa,” Journal of Computer-aided Molecular Design 7, pp. 587–619, 1993.

    Article  Google Scholar 

  22. Y. C. Martin, C. T. Lin, C. Hetti, and J. DeLazzer, “Pls analysis of distance matrices to detect nonlinear relationships between biological potency and molecular properties,” Journal of Medicinal Chemistry 38, pp. 3009–3015, 1995.

    Article  Google Scholar 

  23. P. Legendre and M. J. Anderson, “Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments,” Ecological Monographs 69, pp. 1–24, 1999.

    Article  Google Scholar 

  24. M. A. Zapala and N. J. Schork, “Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables,” Proceedings of the National Academy of Sciences 103, pp. 19430–19435, 2006.

    Article  Google Scholar 

  25. S. Rännar, F. Lindgren, P. Geladi, and S. Wold, “A pls kernel algorithm for data sets with many variables and fewer objects. Part I: Theory and algorithm,” Journal of Chemometrics 8, pp. 111–125, 1994.

    Article  Google Scholar 

  26. A. Höskuldsson, “Pls regression methods,” Journal of Chemometrics 2, pp. 211–228, 1988.

    Article  Google Scholar 

  27. H. Abdi, “Congruence: Congruence coefficient, R V coefficient and Mantel coefficient,” in Encyclopedia of Research Design, N. Salkind, D. D.M., and B. Frey, eds., pp. 222–229, Thousand Oaks (CA): Sage, 2010.

    Google Scholar 

  28. H. Abdi, “R V coefficient and congruence coefficient,” in Encyclopedia of Measurement and Statistics, N. Salkind, ed., pp. 849–853, Thousand Oaks (CA): Sage, 2007.

    Google Scholar 

  29. E. J. Dietz, “Permutation tests for association between two distance matrices,” Systematic Zoology 32, pp. 21–26, 1983.

    Article  Google Scholar 

  30. J. Josse, J. Pagès, and F. Husson, “Testing the significance of the R V coefficient,” Computational Statistics & Data Analysis 53, pp. 82–91, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Kriegeskorte, M. Mur, and P. Bandettini, “Representational similarity analysis connecting the branches of systems neuroscience,” Frontiers in Systems Neuroscience 2, p. doi:10.3389/neuro.06.004.2008, 2008.

    Google Scholar 

  32. R. Kiani, H. Esteky, K. Mipour, and K. Tanaka, “Object category structure in response patterns of neuronal population in monkey inferior temporal cortex,” Journal of Neurophysiology 97, pp. 4296–4309, 2007.

    Article  Google Scholar 

  33. J. Daugman, “How iris recognition works,” I eee Transactions on Circuits and Systems for Video Technology 14, pp. 21–30, 2004.

    Article  Google Scholar 

  34. G. Orban, D. van Essen, and W. Vanduffel, “Comparative mapping of higher visual areas in monkeys and humans,” Trends in Cognitive Sciences 8, pp. 315–324, 2004.

    Article  Google Scholar 

  35. B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy,” Statistical Science 1, pp. 54–77, 1986.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Krishnan, A., Kriegeskorte, N., Abdi, H. (2013). Distance-Based Partial Least Squares Analysis. In: Abdi, H., Chin, W., Esposito Vinzi, V., Russolillo, G., Trinchera, L. (eds) New Perspectives in Partial Least Squares and Related Methods. Springer Proceedings in Mathematics & Statistics, vol 56. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8283-3_8

Download citation

Publish with us

Policies and ethics