Skip to main content

PLS-Based Multivariate Metamodeling of Dynamic Systems

  • Conference paper
  • First Online:
New Perspectives in Partial Least Squares and Related Methods

Abstract

In this paper, we discuss the use of bi-linear methods for assessing temporal dynamics, in particular with regard to the understanding of complex biological processes. We show how the dynamics in multivariate time series measurements can be summarized efficiently by principal component analysis. Then we demonstrate how the development and use of complex, high-dimensional nonlinear differential equation models can be facilitated by multivariate metamodeling using nonlinear pls-based subspace data modeling. Different types of metamodels are outlined and illustrated. Finally, we discuss some cognitive topics characterizing different modeling cultures. In particular, we tabulate various metaphors deemed relevant for how the time domain is envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson CA and Bro R (2000). The N-way Toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 52, 1–4.

    Article  Google Scholar 

  2. Bro R (1996): Multiway calibration. Multilinear pls. Journal of Chemometrics,10, 47–61.

    Article  Google Scholar 

  3. Bro R and Kiers HAL (2003) A new efficient method for determining the number of components in parafac models. Journal of Chemometrics,17, 274–286.

    Article  Google Scholar 

  4. Cacuci DG (2003). Sensitivity and Uncertainty Analysis: Theory Vol 1. New York, Chapman and Hall / CRC.

    Book  Google Scholar 

  5. Cacuci DG, Ionescu-Bujor M, Navon IM (2005). Sensitivity and Uncertainty Analysis: Applications to Large-scale Systems Vol 2. New York, Chapman and Hall / CRC.

    Book  Google Scholar 

  6. Gorissen D, Crombecq K, Couckuyt I, and Dehaene T (2009). Automatic Approximation of Expensive Functions with Active Learning (url). In: Foundations of Computational Intelligence Volume 1: Learning and Approximation: Theoretical Foundations and Applications, Part I: Function Approximation (A-E. Hassanien, A. Abraham, A.V. Vasilakos, and W. Pedrycz,eds). Berlin, Springer Verlag, (pp. 35–62). See also http://www.sumo.intec.ugent.be/?q=sumo_toolbox.

  7. Hotelling H (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417

    Article  Google Scholar 

  8. Hunter P, Coveney PV, de Bono B, Diaz V, Fenner J, Frangi AF, Harris P, Hose R, Kohl P, Lawford P, McCormack K, Mendes M, Omholt S, Quarteroni A, Skår J, Tegner J, Randall Thomas S, Tollis I, Tsamardinos I, van Beek JHGM, and Viceconti M (2010). A vision and strategy for the virtual physiological human in 2010 and beyond. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 2595–2614.

    Article  Google Scholar 

  9. Indahl U (2005). A twist to partial least squares regression. Journal of Chemometrics, 19, 32–44.

    Article  Google Scholar 

  10. Isaeva J, Martens M, Sæbø S, Wyller, JA, and Martens, H (2012). The modelome of line curvature: Many nonlinear models approximated by a single bi-linear metamodel with verbal profiling. Physica D: Nonlinear Phenomena,241, 877–889.

    Article  MATH  Google Scholar 

  11. Jøreskog, K. and Wold, H., (eds.) (1982). Systems under Indirect Observation. Causality, Structure. Prediction. Amsterdam, North-Holland.

    Google Scholar 

  12. Kleijnen JPC (2007). Design and Analysis of Simulation Experiments. New York, USA, Springer.

    Google Scholar 

  13. Kohler, A., Sulé-Suso, J., Sockalingum, G.D., Tobin, M., Bahrami, F., Yang, Y., Pijanka, J., Dumas, P., Cotte, M., van Pittius, D.G., Parkes, G., and Martens, H. (2008). Estimating and correcting Mie scattering in synchrotron-based microscopic FTIR spectra by extended multiplicative signal correction (EMSC). Applied Spectroscopy, 62, 259–266.

    Article  Google Scholar 

  14. Lakoff G. (1989) Personal communication to H. Martens

    Google Scholar 

  15. Lakoff G and Nunez RE (2004). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, Basic Books.

    Google Scholar 

  16. Martens, H. (1979). Factor analysis of chemical mixtures. Non negative factor solutions for spectra of cereal amino acids. Annals Chemica Acta,112, 423–442.

    Article  Google Scholar 

  17. Martens H and Martens M (1993) NIR spectroscopy: applied philosophy. Introductory chapter. In K.I.Hildrum,, T. Isaksson, T.Naes and A.Tandberg, (Eds.) Near Infra-Red Spectroscopy. Bridging the Gap between Data Analysis and NIR Applications. Chichester, UK, Ellis Horwood. (pp 1–10).

    Google Scholar 

  18. Martens H and Næs T (1989). Multivariate Calibration. Chichester (UK): Wiley.

    MATH  Google Scholar 

  19. Martens H and Martens M (2001). Multivariate Analysis of Quality. An Introduction. Chichester, UK, Wiley.

    Google Scholar 

  20. Martens H (2009). Non-linear multivariate dynamics modeled by plsr. In V.E.Vinzi, M.Tenenhaus and R.Guan, (eds.) Proceedings of the 6th International Conference on Partial Least Squares and Related Methods, Beijing 4–7, 2009. Publishing House of Electronics Industry, http://www.phei.com.cn, pp. 139–144.

  21. Martens and Kohler, A (2009). Mathematics and Measurements for High-throughput Quantitative Biology. Biological Theory, 4, 29–43.

    Article  Google Scholar 

  22. Martens H, Veflingstad SR, Plahte E, Martens M, Bertrand D, and Omholt SW (2009). The genotype-phenotype relationship in multicellular pattern-generating models: The neglected role of pattern descriptors. BMC Systems Biology, 3, 87. doi:10.1186/1752-0509-3-87.

    Article  Google Scholar 

  23. Martens H, Mȧge I, Tøndel K, Isaeva J, Høy M, and Sæbø S (2010). Multi-level Binary Replacement (MBR) design for computer experiments in high-dimensional nonlinear systems. Journal of Chemometrics, 24, 748–756.

    Article  Google Scholar 

  24. Martens M and Martens H (2008). The senses linking mind and matter. Mind and Matter, 6, 51–86.

    Google Scholar 

  25. Munck L (2007). A new holistic exploratory approach to systems biology by Near Infrared Spectroscopy evaluated by Chemometrics and data inspection. Journal of Chemometrics, 21, 406–426.

    Article  Google Scholar 

  26. . Pear L (2009). Causality: Models, Reasoning and Inference. Cmabridge: Cambridge University Press.

    Book  Google Scholar 

  27. Rosen R (1991). Life Itself. A Comprehensive Inquiry into the Nature, Origin and Fabrication of Life. Columbia, Columbia University Press.

    Google Scholar 

  28. Saltelli A, Chan K, and Scott (2000). EM: Sensitivity Analysis. New York, NY, Wiley.

    Google Scholar 

  29. Sarkar AX and Sobie EA (2010). Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Computational Biology, 6.

    Google Scholar 

  30. Sobie EA (2009). Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophysical Journal,96, 1264–1274.

    Article  Google Scholar 

  31. Stone M (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B, 36, 111–147.

    MATH  Google Scholar 

  32. Sæbø S, Almøy T, Aarøe J and Aastveit AH (2008). ST-pls: a multi-directional nearest shrunken centroid type classifier via pls. Journal of Chemometrics,22,54–62.

    Article  Google Scholar 

  33. Tafintseva, V., Tøndel K, Ponosov A, and Martens H (in preparation).

    Google Scholar 

  34. Tøndel K, Gjuvsland A B, Mȧge I and Martens H (2010). Screening design for computer experiments: Metamodeling of a deterministic mathematical model of the mammalian circadian clock. Journal of Chemometrics, 24, 738–747.

    Article  Google Scholar 

  35. Tøndel K, Indahl UG, Gjuvsland AB, Vik JO, Hunter P, Omholt SW, and Martens H (2011). Hierarchical Cluster-based Partial Least Squares Regression is an efficient tool for metamodelling of nonlinear dynamic models. BMC Systems Biology,5, 90.

    Google Scholar 

  36. Tøndel K, Indahl UG, Gjuvsland AB, Omholt SW, and Martens H (2012). Multi-way metamodelling facilitates insight into the complex input-output maps of nonlinear dynamic models. BMC Systems Biology, 6, 88.

    Article  Google Scholar 

  37. Tøndel K, Vik JO, Martens H, Indahl UG, Smith N, and Omholt SW (2013). Hierarchical multivariate regression-based sensitivity analysis: a n effective tool for revealing complex parameter interaction patterns in dynamic models. Chemometrics and Intelligent Laboratory Systems, 120, 25–41.

    Article  Google Scholar 

  38. Wold H (1983). Quantitative systems analysis: The pedigree and broad scope of pls soft modeling. In H. Martens and H. Russwurm, (eds.) Food research and data analysis. London, Applied Science Publisher LTD, p. 409.

    Google Scholar 

  39. Wold, S (1974). A theoretical foundation of extrathermodynamic relationships (linear free energy relationships). Chemica Scripta, 5, 97–106.

    Google Scholar 

  40. Wold S, Martens H and Wold H (1983). The multivariate calibration problem in chemistry solved by the pls method. In A. Ruhe and B. Kȧgström, (Eds.) Proceedings of the Conference on Matrix Pencils. Heidelberg, Springer Verlag. (pp 286–293).

    Google Scholar 

  41. Ye KQ (1998). Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association, 93, 1430–1439.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Martens, H. et al. (2013). PLS-Based Multivariate Metamodeling of Dynamic Systems. In: Abdi, H., Chin, W., Esposito Vinzi, V., Russolillo, G., Trinchera, L. (eds) New Perspectives in Partial Least Squares and Related Methods. Springer Proceedings in Mathematics & Statistics, vol 56. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8283-3_1

Download citation

Publish with us

Policies and ethics