Skip to main content

In Vitro Activation of Dormant Follicles for Fertility Preservation

  • Chapter
  • First Online:
Oocyte Biology in Fertility Preservation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 761))

Abstract

Recent advances in radiotherapy and chemotherapy have led to higher cure rates for female children and adolescents with cancer. However, these treatments adversely affect germ cell survival, and ovarian failure is thus a probable side effect of these anticancer therapies. Moreover, an increasing number of women are choosing to postpone childbearing until later in life, but their primordial follicle reserves degenerate with advancing age. Thus there is a pressing need for the development of fertility preservation methods for these individuals. Ovarian tissue cryopreservation prior to loss of the primordial follicle population either due to cancer treatments or normal aging is a promising option for safeguarding fertility. A complete in vitro maturation (IVM) system could help generate mature eggs for later use without the patient having to undergo the cumbersome process involved in current assisted reproduction methods to generate mature eggs. Cryopreserved ovarian cortical tissues have attracted the attention of reproductive biologists and clinicians because of the large number of safely frozen primordial follicles in them, and it is theoretically possible to use these follicles for in vitro activation (IVA) and subsequent IVM. Ovarian tissue collection is independent of patient age and social or personal conditions. Despite being widely accepted potential techniques for fertility preservation, IVA and IVM of human primordial follicles to obtain fertilizable eggs remains far from reality. This chapter highlights the current achievements and obstacles in obtaining growing follicles through activation of dormant follicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abir R, Roizman P, Fisch B, Nitke S, Okon E, Orvieto R, Ben Rafael Z (1999) Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod 14:1299–1301

    Article  PubMed  CAS  Google Scholar 

  • Abir R, Fisch B, Nitke S, Okon E, Raz A, Ben Rafael Z (2001) Morphological study of fully and partially isolated early human follicles. Fertil Steril 75:141–146

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30:438–464

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D, Liu K (2010) mTOR signaling in the control of activation of primordial follicles. Cell Cycle 9:1673–1674

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D, Flohr G, Gorre N, Shen Y, Yang H, Lundin E, Lan Z, Gambello MJ, Liu K (2009) Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15:765–770

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D, Zheng W, Shen Y, Gorre N, Hamalainen T, Cooney AJ, Huhtaniemi I, Lan ZJ, Liu K (2010) Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19:397–410

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D, Gorre N, Risal S, Zhao Z, Zhang H, Shen Y, Liu K (2012) The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs. PLoS One 7:e39034

    Article  PubMed  CAS  Google Scholar 

  • Anderson RA, Wallace WH, Baird DT (2008) Ovarian cryopreservation for fertility preservation: indications and outcomes. Reproduction 136:681–689

    Article  PubMed  CAS  Google Scholar 

  • Broekmans FJ, Knauff EAH, te Velde ER, Macklon NS, Fauser BC (2007) Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab 18:58–65

    Article  PubMed  CAS  Google Scholar 

  • Byrne J, Fears TR, Gail MH, Pee D, Connelly RR, Austin DF, Holmes GF, Holmes FF, Latourette HB, Meigs JW et al (1992) Early menopause in long-term survivors of cancer during adolescence. Am J Obstet Gynecol 166:788–793

    Article  PubMed  CAS  Google Scholar 

  • Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218

    Article  PubMed  CAS  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  PubMed  CAS  Google Scholar 

  • Davis VJ (2006) Female gamete preservation. Cancer 107:1690–1694

    Article  PubMed  Google Scholar 

  • Dole G, Nilsson EE, Skinner MK (2008) Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction 135:671–682

    Article  PubMed  CAS  Google Scholar 

  • Dolmans MM, Michaux N, Camboni A, Martinez-Madrid B, Van Langendonckt A, Nottola SA, Donnez J (2006) Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod 21:413–420

    Article  PubMed  CAS  Google Scholar 

  • Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405–1410

    Article  PubMed  CAS  Google Scholar 

  • Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, Pellicer A, Dolmans M-M (2011) Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med 43:437–450

    Article  PubMed  Google Scholar 

  • Driancourt MA, Reynaud K, Cortvrindt R, Smitz J (2000) Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 5:143–152

    Article  PubMed  CAS  Google Scholar 

  • Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP (1999) Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 140:5789–5796

    Article  PubMed  CAS  Google Scholar 

  • Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek JT, Grootegoed JA et al (2001) Anti-mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142:4891–4899

    Article  PubMed  CAS  Google Scholar 

  • Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JT, Grootegoed JA, Themmen AP (2002a) Anti-mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Durlinger AL, Visser JA, Themmen AP (2002b) Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 124:601–609

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ, O’Brien MJ (1996) Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54:197–207

    Article  PubMed  CAS  Google Scholar 

  • Fortune JE, Cushman RA, Wahl CM, Kito S (2000) The primordial to primary follicle transition. Mol Cell Endocrinol 163:53–60

    Article  PubMed  CAS  Google Scholar 

  • Fortune JE, Yang MY, Muruvi W (2011) In vitro and in vivo regulation of follicular formation and activation in cattle. Reprod Fertil Dev 23:15–22

    Article  PubMed  Google Scholar 

  • Gosden RG (2005) Prospects for oocyte banking and in vitro maturation. J Natl Cancer Inst Monogr, 60–63

    Google Scholar 

  • Gosden RG, Baird DT, Wade JC, Webb R (1994) Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 degrees C. Hum Reprod 9:597–603

    PubMed  CAS  Google Scholar 

  • Gougeon A, Chainy GB (1987) Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil 81:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gurtcheff SE, Klein NA (2011) Diminished ovarian reserve and infertility. Clin Obstet Gynecol 54:666–674

    Article  PubMed  Google Scholar 

  • Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA (2008) A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 23:699–708

    Article  PubMed  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  PubMed  CAS  Google Scholar 

  • Hornick JE, Duncan FE, Shea LD, Woodruff TK (2012) Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod 27(6):1801–1810

    Article  PubMed  CAS  Google Scholar 

  • Hovatta O (2004) Cryopreservation and culture of human ovarian cortical tissue containing early follicles. Eur J Obstet Gynecol Reprod Biol 113(Suppl 1):S50–S54

    Article  PubMed  Google Scholar 

  • Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O (2002) Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 87:316–321

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Manova K, Packer AI, Sanchez S, Bachvarova RF, Besmer P (1993) The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev Biol 157:100–109

    Article  PubMed  CAS  Google Scholar 

  • Hubinont C, Debieve F, Biard JM, Bernard P (2012) Livebirth after cryopreserved ovarian tissue transplantation. Lancet 380:106, author reply 107; discussion 107–108

    Article  PubMed  CAS  Google Scholar 

  • Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360:902–911

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R (2012) Age-related aneuploidy through cohesion exhaustion. EMBO Rep 13:539–546

    Article  PubMed  CAS  Google Scholar 

  • John GB, Gallardo TD, Shirley LJ, Castrillon DH (2008) Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321:197–204

    Article  PubMed  CAS  Google Scholar 

  • Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, Hreinsson J, Hovatta O (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683

    Article  PubMed  CAS  Google Scholar 

  • Kezele PR, Nilsson EE, Skinner MK (2002) Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Mol Cell Endocrinol 192:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kezele P, Nilsson EE, Skinner MK (2005) Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod 73:967–973

    Article  PubMed  CAS  Google Scholar 

  • Kim SS (2006) Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril 85:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Terada N, Nakayama H, Matsumoto K, Kitamura Y (1988) Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev Biol 126:71–79

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Otsuka F, Moore RK, Shimasaki S (2001) Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 65:994–999

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, Lee S, Lee KA (2004) Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev 69:159–163

    Article  PubMed  CAS  Google Scholar 

  • Li J, Kawamura K, Cheng Y, Liu S, Klein C, Liu S, Duan EK, Hsueh AJ (2010) Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA 107:10280–10284

    Article  PubMed  CAS  Google Scholar 

  • Li J, Cheng Y, Cho J, Takae S, Sato Y, Hsueh A (2011) An in vitro culture system to retrieve mature mouse oocytes after activation of dormant follicles. Endocr Rev 32:P1–P288

    Article  Google Scholar 

  • Lobo RA (2005) Potential options for preservation of fertility in women. N Engl J Med 353:64–73

    Article  PubMed  CAS  Google Scholar 

  • Martins FS, Celestino JJ, Saraiva MV, Matos MH, Bruno JB, Rocha-Junior CM, Lima-Verde IB, Lucci CM, Bao SN, Figueiredo JR (2008) Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod Fertil Dev 20:916–924

    Article  PubMed  CAS  Google Scholar 

  • McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    Article  PubMed  CAS  Google Scholar 

  • Meirow D, Nugent D (2001) The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update 7:535–543

    Article  PubMed  CAS  Google Scholar 

  • Meirow D, Biederman H, Anderson RA, Wallace WH (2010) Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol 53:727–739

    Article  PubMed  Google Scholar 

  • Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C, Guillermet C, Brambilla C, Brambilla E (1996) In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem 44:959–968

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Skinner MK (2003) Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 69:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Skinner MK (2004) Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol 214:19–25

    Article  PubMed  CAS  Google Scholar 

  • Nilsson E, Parrott JA, Skinner MK (2001) Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175:123–130

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Kezele P, Skinner MK (2002) Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188:65–73

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Detzel C, Skinner MK (2006) Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction 131:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • O’Brien MJ, Pendola JK, Eppig JJ (2003) A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod 68:1682–1686

    Article  PubMed  Google Scholar 

  • Oktay K, Tilly J (2004) Livebirth after cryopreserved ovarian tissue autotransplantation. Lancet 364:2091–2092, author reply 2092–2093

    Article  PubMed  Google Scholar 

  • Oktay K, Schenken RS, Nelson JF (1995) Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol Reprod 53:295–301

    Article  PubMed  CAS  Google Scholar 

  • Oktay K, Nugent D, Newton H, Salha O, Chatterjee P, Gosden RG (1997a) Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril 67:481–486

    Article  PubMed  CAS  Google Scholar 

  • Oktay K, Nugent D, Newton H, Salha O, Chatterjee P, Gosden RG (1997b) Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril 67:481–486

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Munoz-Martin M, Gomez-Lopez G, Canamero M, Mulero F, Pastor J, Martinez S, Romanos E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394

    Article  PubMed  CAS  Google Scholar 

  • Packer AI, Hsu YC, Besmer P, Bachvarova RF (1994) The ligand of the c-kit receptor promotes oocyte growth. Dev Biol 161:194–205

    Article  PubMed  Google Scholar 

  • Parrott JA, Skinner MK (1999) Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140:4262–4271

    Article  PubMed  CAS  Google Scholar 

  • Picton HM, Harris SE, Muruvi W, Chambers EL (2008) The in vitro growth and maturation of follicles. Reproduction 136:703–715

    Article  PubMed  CAS  Google Scholar 

  • Rajareddy S, Reddy P, Du C, Liu L, Jagarlamudi K, Tang W, Shen Y, Berthet C, Peng SL, Kaldis P et al (2007) p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol 21:2189–2202

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL et al (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Zheng W, Liu K (2010) Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab 21:96–103

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl M, Schmidt KT, Ernst E, Rasmussen PE, Loft A, Byskov AG, Andersen AN, Andersen CY (2011) Cryopreservation of ovarian tissue for a decade in Denmark: a view of the technique. Reprod Biomed Online 22:162–171

    Article  PubMed  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding Andersen C (2003) Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod 18:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Trounson A (1997) Oncological implications in the replacement of ovarian tissue. Hum Reprod 12:403–405

    Article  PubMed  CAS  Google Scholar 

  • Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO (1996) Ovary and ovulation: fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod 11:1668–1673

    Article  PubMed  CAS  Google Scholar 

  • Slot KA, Kastelijn J, Bachelot A, Kelly PA, Binart N, Teerds KJ (2006) Reduced recruitment and survival of primordial and growing follicles in GH receptor-deficient mice. Reproduction 131:525–532

    Article  PubMed  CAS  Google Scholar 

  • Sobinoff AP, Mahony M, Nixon B, Roman SD, McLaughlin EA (2011) Understanding the Villain: DMBA-induced preantral ovotoxicity involves selective follicular destruction and primordial follicle activation through PI3K/Akt and mTOR signaling. Toxicol Sci 123:563–575

    Article  PubMed  CAS  Google Scholar 

  • Telfer EE, McLaughlin M, Ding C, Thong KJ (2008) A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Tomic D, Miller KP, Kenny HA, Woodruff TK, Hoyer P, Flaws JA (2004) Ovarian follicle development requires Smad3. Mol Endocrinol 18:2224–2240

    Article  PubMed  CAS  Google Scholar 

  • Vanderhyden B (2002) Molecular basis of ovarian development and function. Front Biosci 7:d2006–d2022

    Article  PubMed  CAS  Google Scholar 

  • Vitt UA, McGee EA, Hayashi M, Hsueh AJ (2000) In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141:3814–3820

    Article  PubMed  CAS  Google Scholar 

  • Wallace WH, Shalet SM, Hendry JH, Morris-Jones PH, Gattamaneni HR (1989) Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol 62:995–998

    Article  PubMed  CAS  Google Scholar 

  • Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE (1996) Initiation in vitro of growth of bovine primordial follicles. Biol Reprod 55:942–948

    Article  PubMed  CAS  Google Scholar 

  • Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE (1997) Initiation of growth of baboon primordial follicles in vitro. Hum Reprod 12:1993–2001

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Takakura N, Kataoka H, Kunisada T, Okamura H, Nishikawa SI (1997) Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol 184:122–137

    Article  PubMed  CAS  Google Scholar 

  • Yu N, Roy SK (1999) Development of primordial and prenatal follicles from undifferentiated somatic cells and oocytes in the hamster prenatal ovary in vitro: effect of insulin. Biol Reprod 61:1558–1567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank Prof. Kui Liu for his suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Adhikari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adhikari, D. (2013). In Vitro Activation of Dormant Follicles for Fertility Preservation. In: Kim, S. (eds) Oocyte Biology in Fertility Preservation. Advances in Experimental Medicine and Biology, vol 761. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8214-7_4

Download citation

Publish with us

Policies and ethics