Skip to main content

Effects of Fertility Preservation on Oocyte Genomic Integrity

  • Chapter
  • First Online:
Oocyte Biology in Fertility Preservation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 761))

Abstract

An important adjunct to the field of fertility preservation is cryobiology. At present, the long-term storage of oocytes, embryos or ovarian tissues relies upon cryopreservation technologies that fall into roughly two different modalities: traditional slow freeze (SF) or rapid cooling, often invoking the process of vitrification. Unlike most cells in the body, female germ cells or oocytes present unique biophysical constraints as either isolated entities or within the context of ovarian follicles. Especially relevant is the fact that the oocyte nucleus, often referred to as the germinal vesicle, is highly hydrated and presents a voluminous non-chromatin occupied space that undergoes significant alterations in chromatin organization during its development. While the impact of cryopreservation on the integrity of the oocyte plasma membrane, organelles, and spindle cytoskeleton have been the focus of most studies to date, the short-term and long-term consequences of chilling and cryoprotectants on the chromosomal and genomic integrity has received much less attention. This chapter reviews the topic of genomic integrity at the level of the oocyte and provides guidelines for the design and implementation of strategies that will permit objective assessment of current and future protocols applied in the field of fertility preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaens I, Smitz J, Jacquet P (2009) The current knowledge on radiosensitivity of ovarian follicle development stages. Hum Reprod Update 15(3):359–377

    Article  PubMed  CAS  Google Scholar 

  • Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28

    Article  PubMed  Google Scholar 

  • Albertini DF, Rodrigues P, Limback D et al (2008) Oogenesis: prospects and challenges for the future. J Cell Physiol 216(2):355–365

    Article  PubMed  Google Scholar 

  • Amorim CA, Dolmans MM, David A et al. (2012) Vitrification and xenografting of human ovarian tissue. Fertil Steril 98(5):1291-1298.e1-2

    Google Scholar 

  • Amorim CA, Van Langendonckt A, David A et al (2009) Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod 24(1):92–99

    Article  PubMed  CAS  Google Scholar 

  • Borini A, Levi Setti PE, Anserini P et al (2010) Multicenter observational study on slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril 94(5):1662–1668

    Article  PubMed  Google Scholar 

  • Bromfield J, Messamore W, Albertini DF (2008) Epigenetic regulation during mammalian oogenesis. Reprod Fertil Dev 20(1):74–80

    Article  PubMed  CAS  Google Scholar 

  • Bromfield JJ, Coticchio G, Hutt K et al (2009) Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod 24(9):2114–2123

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Burke B, Ellenberg J (2002) Remodelling the walls of the nucleus. Nat Rev Mol Cell Biol 3(7):487–497

    Article  PubMed  CAS  Google Scholar 

  • Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44(4):390–397, S1

    Article  PubMed  CAS  Google Scholar 

  • Coticchio G, Bromfield JJ, Sciajno R et al (2009) Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod Biomed Online 19(Suppl 3):29–34

    Article  PubMed  Google Scholar 

  • Coticchio G, De Santis L, Rossi G et al (2006) Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configurations after slow-cooling cryopreservation. Hum Reprod 21(7):1771–1776

    Article  PubMed  CAS  Google Scholar 

  • De La Fuente R, Viveiros MM, Burns KH et al (2004) Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 275(2):447–458

    Article  Google Scholar 

  • Donnez J, Kim SS, Albertini DF (2010) Proceedings of the first world congress on fertility preservation: executive summary. J Assist Reprod Genet 27(5):191–195

    Article  PubMed  Google Scholar 

  • Dyson JM, O’Malley CJ, Becanovic J et al (2001) The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol 155(6):1065–1080

    Article  PubMed  CAS  Google Scholar 

  • Fragouli E, Bianchi V, Patrizio P et al (2010) Transcriptomic profiling of human oocytes: association of meiotic aneuploidy and altered oocyte gene expression. Mol Hum Reprod 16(8):570–582

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    Article  PubMed  CAS  Google Scholar 

  • Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190(2):197–207

    Article  PubMed  CAS  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  PubMed  CAS  Google Scholar 

  • Hutt KJ, Albertini DF (2007) An oocentric view of folliculogenesis and embryogenesis. Reprod Biomed Online 14(6):758–764

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Blasco MA, Keefe DL (2002) Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. EMBO Rep 3(3):230–234

    Article  PubMed  CAS  Google Scholar 

  • Mattson BA, Albertini DF (1990) Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev 25(4):374–383

    Article  PubMed  CAS  Google Scholar 

  • Meirow D (2000) Reproduction post-chemotherapy in young cancer patients. Mol Cell Endocrinol 169(1–2):123–131

    Article  PubMed  CAS  Google Scholar 

  • Moir RD, Spann TP, Herrmann H et al (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 149(6):1179–1192

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W et al (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    Article  PubMed  CAS  Google Scholar 

  • Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40

    Article  PubMed  CAS  Google Scholar 

  • Wickramasinghe D, Albertini DF (1992) Centrosome phosphorylation and the developmental expression of meiotic competence in mouse oocytes. Dev Biol 152(1):62–74

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Albertini M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albertini, D.F., Olsen, R. (2013). Effects of Fertility Preservation on Oocyte Genomic Integrity. In: Kim, S. (eds) Oocyte Biology in Fertility Preservation. Advances in Experimental Medicine and Biology, vol 761. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8214-7_3

Download citation

Publish with us

Policies and ethics