Skip to main content

The Control of Oocyte Survival by Intrinsic and Extrinsic Factors

  • Chapter
  • First Online:
Oocyte Biology in Fertility Preservation

Capsule

Mechanisms that control the survival of oocytes and, by extension, the duration of ovarian function have been identified. However, it is still not clear whether oocyte “quality” is related to survival, nor is the role of the granulosa cells of follicles in follicle survival entirely understood. Here, we consider oocyte-intrinsic and oocyte-extrinsic mechanisms of oocyte loss and argue that developing a better understanding of such physiological events is needed to protect fertility, fecundity, and ovarian function in women.

Abstract

The duration that ovaries function is, as is intuitive, controlled by the number of remaining oocytes within follicles. Once the number of follicles drops beneath a threshold number, ovarian function ceases. Thus, understanding mechanisms that control oocyte survival is paramount as we consider strategies to protect or prolong ovarian function in women. It is often assumed that physiological oocyte survival is entirely controlled by “oocyte- intrinsic” factors, such as poor genetic quality or accumulated damage to the oocyte itself. Oocytes that have poor genetic quality due to development or accumulated damage would then die sooner than those of higher “quality.” Indeed, new data suggest that oocyte-intrinsic genetic quality as determined by the ability to repair double-stranded DNA breaks is a significant contributor to oocyte survival and the duration of ovarian function. However, the nature of the follicle, where the oocyte and surrounding granulosa cells exist in intimate contact and rely upon each other for survival signals and metabolic function, makes it unlikely that oocyte-intrinsic factors entirely control oocyte survival. We and others are assessing the role of adjacent somatic (granulosa) cells in follicle survival, determining the relative importance of “oocyte-extrinsic” factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertini DF, Rider V (1994) Patterns of intercellular connectivity in the mammalian cumulus-oocyte complex. Microsc Res Tech 27(2):125–133

    Article  PubMed  CAS  Google Scholar 

  • Banu SK, Stanley JA, Lee J, Stephen SD, Arosh JA, Hoyer PB, Burghardt RC (2011) Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol 251(3):253–266

    Article  PubMed  CAS  Google Scholar 

  • Bar-Joseph H, Ben-Aharon I, Rizel S, Stemmer SM, Tzabari M, Shalgi R (2010) Doxorubicin-induced apoptosis in germinal vesicle (GV) oocytes. Reprod Toxicol 30(4):566–572

    Article  PubMed  CAS  Google Scholar 

  • Barritt J, Willadsen S, Brenner C, Cohen J (2001) Cytoplasmic transfer in assisted reproduction. Hum Reprod Update 7(4):428–435

    Article  PubMed  CAS  Google Scholar 

  • Beard ME, Conder JL, Clark VA (1984) Ovarian failure following cytotoxic therapy. N Z Med J 97(767):759–762

    PubMed  CAS  Google Scholar 

  • Becker K, Schoneich J (1982) Expression of genetic damage induced by alkylating agents in germ cells of female mice. Mutat Res 92(1–2):447–464

    Article  PubMed  CAS  Google Scholar 

  • Bentov Y, Esfandiari N, Burstein E, Casper RF (2010) The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients. Fertil Steril 93(1):272–275

    Article  PubMed  CAS  Google Scholar 

  • Chaffin CL, Lee YS, VandeVoort CA, Patel BG, Latham KE (2012) Rhesus monkey cumulus cells revert to a mural granulosa cell state after an ovulatory stimulus. Endocrinology 153(11): 5535–5545

    Article  PubMed  CAS  Google Scholar 

  • Cieniewicz AM, Woodruff RI (2010) Passage through vertebrate gap junctions of 17/18kDa molecules is primarily dependent upon molecular configuration. Tissue Cell 42(1):47–52

    Article  PubMed  CAS  Google Scholar 

  • Conway GS (1997) Premature ovarian failure. Curr Opin Obstet Gynecol 9(3):202–206

    Article  PubMed  CAS  Google Scholar 

  • Curran JE, Woodruff RI (2007) Passage of 17 kDa calmodulin through gap junctions of three vertebrate species. Tissue Cell 39(5):303–309

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ, O’Brien MJ (1996) Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54(1):197–207

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK (2005) Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod 73(2):351–357

    Article  PubMed  CAS  Google Scholar 

  • FitzHarris G, Siyanov V, Baltz JM (2007) Granulosa cells regulate oocyte intracel- lular pH against acidosis in preantral follicles by multiple mechanisms. Development 134(23):4283–4295

    Article  PubMed  CAS  Google Scholar 

  • Gage M, Wattendorf D, Henry LR (2012) Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol 105(5):444–451

    Article  PubMed  CAS  Google Scholar 

  • Hansmann I (1974) Chromosome aberrations in metaphase II-oocytes. Stage sensitivity in the mouse oogenesis to amethopterin and cyclophosphamide. Mutat Res 22(2):175–191

    Article  PubMed  CAS  Google Scholar 

  • Hoyer PB, Devine PJ, Hu X, Thompson KE, Sipes IG (2001) Ovarian toxicity of 4-vinylcyclohexene diepoxide: a mechanistic model. Toxicol Pathol 29(1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends Genet 24(2):86–93

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J (2001) Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev 109(2):355–361

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Keefe DL (2013) Ovarian aging: breaking up is hard to fix. Sci Transl Med 5(172):172fs5

    Article  PubMed  Google Scholar 

  • Johnson J, Patrizio P (2011) Ovarian cryopreservation strategies and the fine control of ovarian follicle development in vitro. Ann N Y Acad Sci 1221:40–46

    Article  PubMed  Google Scholar 

  • Jurisicova A, Lee HJ, D’Estaing SG, Tilly J, Perez GI (2006) Molecular requirements for doxorubicin-mediated death in murine oocytes. Cell Death Differ 13(9):1466–1474

    Article  PubMed  CAS  Google Scholar 

  • Kagawa N, Kuwayama M, Nakata K, Vajta G, Silber S, Manabe N, Kato O (2007) Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice. Reprod Biomed Online 14(6):693–699

    Article  PubMed  Google Scholar 

  • Kalma Y, Granot I, Galiani D, Barash A, Dekel N (2004) Luteinizing hormone-induced connexin 43 down-regulation: inhibition of translation. Endocrinology 145(4):1617–1624

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa R, Kastan MB (2005) The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol 70:99–109

    Article  PubMed  CAS  Google Scholar 

  • Kong XX, Fu YC, Xu JJ, Zhuang XL, Chen ZG, Luo LL (2011) Resveratrol, an effective regulator of ovarian development and oocyte apoptosis. J Endocrinol Invest 34(11):e374–e381

    PubMed  CAS  Google Scholar 

  • Liu J, Rybouchkin A, Van der Elst J, Dhont M (2002) Fertilization of mouse oocytes from in vitro-matured preantral follicles using classical in vitro fertilization or intracytoplasmic sperm injection. Biol Reprod 67(2):575–579

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L (2013) Resveratrol protects against age-associated infertility in mice. Hum Reprod 28(3):707–717

    Article  PubMed  CAS  Google Scholar 

  • Marangos P, Carroll J (2012) Oocytes progress beyond prophase in the presence of DNA damage. Curr Biol 22(11):989–994

    Article  PubMed  CAS  Google Scholar 

  • Matikainen T, Perez GI, Jurisicova A, Pru JK, Schlezinger JJ, Ryu HY, Laine J, Sakai T, Korsmeyer SJ, Casper RF, Sherr DH, Tilly JL (2001) Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet 28(4):355–360

    Article  PubMed  CAS  Google Scholar 

  • Mazaud S, Guigon CJ, Lozach A, Coudouel N, Forest MG, Coffigny H, Magre S (2002) Establishment of the reproductive function and transient fertility of female rats lacking primordial follicle stock after fetal gamma-irradiation. Endocrinology 143(12):4775–4787

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin M, Patrizio P, Kayisli U, Luk J, Thomson TC, Anderson RA, Telfer EE, Johnson J (2011) mTOR kinase inhibition results in oocyte loss characterized by empty follicles in human ovarian cortical strips cultured in vitro. Fertil Steril 96(5):1154–1159

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin M, Telfer EE (2010) Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139(6):971–978

    Article  PubMed  CAS  Google Scholar 

  • Moor RM, Osborn JC, Cran DG, Walters DE (1981) Selective effect of gonadotrophins on cell coupling, nuclear maturation and protein synthesis in mammalian oocytes. J Embryol Exp Morphol 61:347–365

    PubMed  CAS  Google Scholar 

  • Nehra D, Le HD, Fallon EM, Carlson SJ, Woods D, White YA, Pan AH, Guo L, Rodig SJ, Tilly JL, Rueda BR, Puder M (2012) Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell 11(6):1046–1054

    Article  PubMed  CAS  Google Scholar 

  • O’Brien MJ, Pendola JK, Eppig JJ (2003) A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod 68(5):1682–1686

    Article  PubMed  Google Scholar 

  • Oktay K, Sonmezer M (2008) Chemotherapy and amenorrhea: risks and treatment options. Curr Opin Obstet Gynecol 20(4):408–415

    Article  PubMed  Google Scholar 

  • Oktem O, Oktay K (2007) Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer 110(10):2222–2229

    Article  PubMed  CAS  Google Scholar 

  • Patrizio P, Bianchi V, Lalioti MD, Gerasimova T, Sakkas D (2007) High rate of biological loss in assisted reproduction: it is in the seed, not in the soil. Reprod Biomed Online 14 Spec No 1:23–26

    Google Scholar 

  • dela Pena EC, Takahashi Y, Katagiri S, Atabay EC, Nagano M (2002) Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction 123(4):593–600

    Article  PubMed  CAS  Google Scholar 

  • Roti Roti EC, Leisman SK, Abbott DH, Salih SM (2012) Acute doxorubicin insult in the mouse ovary is cell- and follicle-type dependent. PLoS One 7(8):e42293

    Article  PubMed  CAS  Google Scholar 

  • Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N (2006) Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 147(5): 2280–2286

    Article  PubMed  CAS  Google Scholar 

  • Selesniemi K, Lee HJ, Muhlhauser A, Tilly JL (2011) Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc Natl Acad Sci USA 108(30):12319–12324

    Article  PubMed  CAS  Google Scholar 

  • Simon AM, Chen H, Jackson CL (2006) Cx37 and Cx43 localize to zona pellucida in mouse ovarian follicles. Cell Commun Adhes 13(1–2):61–77

    Article  PubMed  CAS  Google Scholar 

  • Sklar C (2005) Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr 34:25–27

    Article  PubMed  Google Scholar 

  • Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16(4):395–414

    Article  PubMed  CAS  Google Scholar 

  • Spears N, Boland NI, Murray AA, Gosden RG (1994) Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod 9(3):527–532

    PubMed  CAS  Google Scholar 

  • Sugiura K, Pendola FL, Eppig JJ (2005) Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 279(1):20–30

    Article  PubMed  CAS  Google Scholar 

  • Telfer EE, McLaughlin M, Ding C, Thong KJ (2008) A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23(5):1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Thomson TC, Fitzpatrick KE, Johnson J (2010) Intrinsic and extrinsic mechanisms of oocyte loss. Mol Hum Reprod 16(12):916–927

    Article  PubMed  CAS  Google Scholar 

  • Thomson TC, Johnson J (2010) Inducible somatic oocyte destruction in response to rapamycin requires wild-type regulation of follicle cell epithelial polarity. Cell Death Differ 17(11): 1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Thomson TC, Schneemann A, Johnson J (2012) Oocyte destruction is activated during viral infection. Genesis 50(6):453–465

    Article  PubMed  CAS  Google Scholar 

  • Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K (2013) Impairment of BRCA1-Related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med 5(172):172ra21

    Article  PubMed  Google Scholar 

  • Yuen WS, Merriman JA, O’Bryan MK, Jones KT (2012) DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes. PLoS One 7(8):e43875

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Emre Seli and Lisa Pastore for scientific and editorial critiques of the manuscript while in preparation. JJ is supported by Yale Department of Obstetrics, Gynecology, and Reproductive Sciences Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Johnson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kurus, M., Karakaya, C., Karalok, M.H., To, G., Johnson, J. (2013). The Control of Oocyte Survival by Intrinsic and Extrinsic Factors. In: Kim, S. (eds) Oocyte Biology in Fertility Preservation. Advances in Experimental Medicine and Biology, vol 761. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8214-7_2

Download citation

Publish with us

Policies and ethics