Skip to main content

Thrombotic Microangiopathies: Thrombus Formation Due to Common or Related Mechanisms?

  • Chapter
  • First Online:
Core Concepts in Parenchymal Kidney Disease
  • 1288 Accesses

Abstract

Thrombotic microangiopathies (TMA) represent a spectrum of related disorders that have in common thrombocytopenia and hemolytic anemia and that may affect the kidney as well as other organs including the heart, the gastrointestinal tract, lungs, and the brain. The two major forms of TMA are hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP), and there is an ongoing discussion aiming to define how strongly the two disorders are related to each other and how common the underlying pathological mechanisms are. As the pathogenetic mechanisms of each group are more and more understood, the overlap of the two diseases, as well as reasons why they manifest in different organs, is becoming clearer. TTP has primarily neurological complications but develops also in the kidney, and HUS is primarily a kidney disease that often involves other tissues and organs, including heart and brain. In HUS endothelial cell damage and platelet activation that lead to thrombus formation are caused by defective complement action due to genetic—as well as acquired—factors including autoantibodies to Factor H. In TTP the release of multimers of von Willebrand Factor (vWF) and often defective action of the ADAMTS13 lead to thrombus formation and are caused by mutation in the ADAMTS13 gene as well as by acquired autoantibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadler JE. Thrombotic thrombocytopenic purpura: a moving target. Hematology Am Soc Hematol Educ Program. 2006:415–20.

    Google Scholar 

  2. Gasser CGE, Steck A, et al. Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia. Schweiz Med Wochenschr. 1955;85:905–9.

    PubMed  CAS  Google Scholar 

  3. Tsai HM. The molecular biology of thrombotic microangiopathy. Kidney Int. 2006;70:16–23.

    Article  PubMed  CAS  Google Scholar 

  4. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:1676–87.

    Article  PubMed  CAS  Google Scholar 

  5. Skerka C, Licht C, Mengel M, et al. Autoimmune forms of thrombotic microangiopathy and membranoproliferative glomerulonephritis: indications for a disease spectrum and common pathogenic principles. Mol Immunol. 2009;46:2801–17.

    Article  PubMed  CAS  Google Scholar 

  6. Nathanson S, Kwon T, Elmaleh M, Charbit M, Launay EA, Harambat J, Brun M, Ranchin B, Bandin F, Cloarec S, Bourdat-Michel G, Piètrement C, Champion G, Ulinski T, Deschênes G. Acute neurological involvement in diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2010;5(7):1218–28.

    Article  PubMed  CAS  Google Scholar 

  7. Zipfel PF, Mache C, Müller D, et al. DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol. 2010;25(10):2009–19.

    Article  PubMed  Google Scholar 

  8. Zipfel PF, Edey M, Heinen S, et al. Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet. 2007;3(3):e41.

    Article  PubMed  Google Scholar 

  9. Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood. 2008;112:11–8.

    Article  PubMed  CAS  Google Scholar 

  10. Tsai HM. Pathophysiology of thrombotic thrombocytopenic purpura. Int J Hematol. 2010;91:1–19.

    Article  PubMed  Google Scholar 

  11. Copelovitch L, Kaplan BS. The thrombotic microangiopathies. Pediatr Nephrol. 2008;23:1761–7.

    Article  PubMed  Google Scholar 

  12. de Groot R, Lane DA. Shear tango: dance of the ADAMTS13/VWF complex. Blood. 2008;112:1548–9.

    Article  PubMed  Google Scholar 

  13. Liu F, Huang J, Sadler JE. Shiga toxin (Stx)1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signaling pathways. Blood. 2011;118(12):3392–8.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang X, Halvorsen K, Zhang CZ, et al. Mechanoenzymatic cleavage of the ultra large vascular protein von Willebrand factor. Science. 2009;324:1330–4.

    Article  PubMed  CAS  Google Scholar 

  15. Manea M, Tati R, Karlsson J, et al. Biologically active ADAMTS13 is expressed in renal tubular epithelial cells. Pediatr Nephrol. 2010;25(1):87–96.

    Article  PubMed  Google Scholar 

  16. Turner NA, Nolasco L, Ruggeri ZM, et al. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood. 2009;114:5102–11.

    Article  PubMed  CAS  Google Scholar 

  17. Akiyama M, Takeda S, Kokame K, Takagi J, et al. Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci USA. 2009;106:19274–9.

    Article  PubMed  CAS  Google Scholar 

  18. Raife TJ, Cao W, Atkinson BS, et al. Leukocyte proteases cleave von Willebrand factor at or near the ADAMTS13 cleavage site. Blood. 2009;114:1666–74.

    Article  PubMed  CAS  Google Scholar 

  19. McGrath RT, McKinnon TA, Byrne B, et al. Expression of terminal {alpha}2–6 linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13. Blood. 2010;115(13):2666–73.

    Article  PubMed  CAS  Google Scholar 

  20. Gardner MD, Chion CK, de Groot R, et al. A functional calcium-binding site in the metalloprotease domain of ADAMTS13. Blood. 2009;113:1149–57.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou W, Tsai HM. N-Glycans of ADAMTS13 modulate its secretion and von Willebrand factor cleaving activity. Blood. 2009;113:929–35.

    Article  PubMed  CAS  Google Scholar 

  22. Zanardelli S, Chion AC, Groot E, et al. A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF. Blood. 2009;114:2819–28.

    Article  PubMed  CAS  Google Scholar 

  23. Feys HB, Pareyn I, Vancraenenbroeck R, et al. Mutation of the H-bond acceptor S119 in the ADAMTS13 metalloprotease domain reduces secretion and substrate turnover in a patient with congenital thrombotic thrombocytopenic purpura. Blood. 2009;114:4749–52.

    Article  PubMed  CAS  Google Scholar 

  24. Camilleri RS, Scully M, Thomas M, Mackie IJ, Liesner R, Chen WJ, Manns K, Machin SJ. A phenotype-genotype correlation of ADAMTS13 mutations in congenital TTP patients treated in the United Kingdom. J Thromb Haemost. 2012;10(9):1792–801. doi:10.1111/j.1538-7836.2012.04852.x.

    Article  PubMed  CAS  Google Scholar 

  25. Noris M, Bucchioni S, Galbusera M, et al. Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J Am Soc Nephrol. 2005;16:1177–83.

    Article  PubMed  CAS  Google Scholar 

  26. Rieger M, Ferrari S, Kremer Hovinga JA, et al. Relation between ADAMTS13 activity and ADAMTS13 antigen levels in healthy donors and patients with thrombotic microangiopathies (TMA). Thromb Haemost. 2006;95:212–20.

    PubMed  CAS  Google Scholar 

  27. Pos W, Crawley JT, Fijnheer R, et al. An autoantibody epitope comprising residues R660, Y661 and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood. 2010;115(8):1640–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ferrari S, Scheiflinger F, Rieger M, et al. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood. 2007;109:2815–22.

    PubMed  CAS  Google Scholar 

  29. Ferrari S, Mudde GC, Rieger M, et al. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2009;7:1703–10.

    Article  PubMed  CAS  Google Scholar 

  30. Laje P, Shang D, Cao W, et al. Correction of murine ADAMTS13 deficiency by hematopoietic progenitor cell-mediated gene therapy. Blood. 2009;113:2172–80.

    Article  PubMed  CAS  Google Scholar 

  31. Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16:1035–50.

    Article  PubMed  Google Scholar 

  32. Kwon T, Belot A, Ranchin B, et al. Varicella as a trigger of atypical haemolytic uraemic syndrome associated with complement dysfunction: two cases. Nephrol Dial Transplant. 2009;24:2752–4.

    Article  PubMed  Google Scholar 

  33. Banerjee R, Hersh AL, Newland J, Beekmann SE, Polgreen PM, Bender J, Shaw J, Copelovitch L, Kaplan BS, Shah SS, Emerging Infections Network Hemolytic-Uremic Syndrome Study Group. Streptococcus pneumoniae-associated hemolytic uremic syndrome among children in North America. Pediatr Infect Dis J. 2011;30(9):736–9.

    Article  PubMed  Google Scholar 

  34. Chaturvedi S, Licht C, Langlois V. Hemolytic uremic syndrome caused by Bordetella pertussis infection. Pediatr Nephrol. 2010;25(7):1361–4.

    Article  PubMed  Google Scholar 

  35. Orth D, Khan AB, Naim A, et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol. 2009;182:6394–400.

    Article  PubMed  CAS  Google Scholar 

  36. Thurman JM, Marians R, Emlen W, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4:1920–4.

    Article  PubMed  CAS  Google Scholar 

  37. Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A, Bauwens A, Peters G, Karch H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis. 2011;11(9):671–766.

    PubMed  CAS  Google Scholar 

  38. Available from http://www.rki.de/EN/Home/EHEC_final_report.pdf

  39. Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C, Wilking H, Deleré Y, der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Höhle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Luber P, Rosner B, Stark K, Kühne M. German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med. 2011;365(19):1763–70.

    Article  PubMed  CAS  Google Scholar 

  40. Frank C, Werber D, Cramer JP, Askar M, Faber M, der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, HUS Investigation Team. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011;365(19):1771–80.

    Article  PubMed  CAS  Google Scholar 

  41. Zipfel PF. Complement and immune defense: from innate immunity to human diseases. Immunol Lett. 2009;126:1–7.

    Article  PubMed  CAS  Google Scholar 

  42. Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, Daina E, Fenili C, Castelletti F, Sorosina A, Piras R, Donadelli R, Maranta R, van der Meer I, Conway EM, Zipfel PF, Goodship TH, Remuzzi G. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59.

    Article  PubMed  CAS  Google Scholar 

  43. Loirat C, Frémeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011;6:60.

    Article  PubMed  Google Scholar 

  44. Fremeaux-Bacchi V, Miller EC, Liszewski MK, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112:4948–52.

    Article  PubMed  CAS  Google Scholar 

  45. Weitz M, Amon O, Bassler D, Koenigsrainer A, Nadalin S. Prophylactic eculizumab prior to kidney transplantation for atypical hemolytic uremic syndrome. Pediatr Nephrol. 2011;26(8):1325–9.

    Article  PubMed  Google Scholar 

  46. Ståhl AL, Kristoffersson A, Olin AI, Olsson ML, Roodhooft AM, Proesmans W, Karpman D. A novel mutation in the complement regulator clusterin in recurrent hemolytic uremic syndrome. Mol Immunol. 2009;46(11–12):2236–43.

    Article  PubMed  Google Scholar 

  47. Skerka C, Józsi M, Zipfel PF, et al. Autoantibodies in haemolytic uraemic syndrome (HUS). Thromb Haemost. 2009;101:227–32.

    PubMed  CAS  Google Scholar 

  48. Zipfel PF, Mache C, Müller D, et al. DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol. 2010;25(10):2009–19.

    Article  PubMed  Google Scholar 

  49. Józsi M, Licht C, Strobel S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111:1512–4.

    Article  PubMed  Google Scholar 

  50. Dragon-Durey MA, Loirat C, Cloarec S, et al. Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16:555–63.

    Article  PubMed  CAS  Google Scholar 

  51. Józsi M, Strobel S, Dahse HM, et al. Anti factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood. 2007;110:1516–8.

    Article  PubMed  Google Scholar 

  52. Moore I, Strain L, Pappworth I, et al. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 2010;115:379–87.

    Article  PubMed  CAS  Google Scholar 

  53. Abarrategui-Garrido C, Martinez-Barricarte R, Lopez-Trascasa M, et al. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood. 2009;114:4261–71.

    Article  PubMed  CAS  Google Scholar 

  54. Heinen S, Sanchez-Corral P, Jackson MS, Strain L, Goodship JA, Kemp EJ, Skerka C, Jokiranta TS, Meyers K, Wagner E, Robitaille P, Esparza-Gordillo J, Rodriguez de Cordoba S, Zipfel PF, Goodship TH. De novo gene conversion in the RCA gene cluster (1q32) causes mutations in complement factor H associated with atypical hemolytic uremic syndrome. Hum Mutat. 2006;27(3):292–3.

    Article  PubMed  Google Scholar 

  55. Francis NJ, McNicholas B, Awan A, Waldron M, Reddan D, Sadlier D, Kavanagh D, Strain L, Marchbank KJ, Harris CL, Goodship TH. A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome. Blood. 2012;119(2):591–601.

    Article  PubMed  CAS  Google Scholar 

  56. Taylor CM, Machin S, Wigmore SJ, et al. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010;148:37–47.

    Article  PubMed  CAS  Google Scholar 

  57. Ariceta G, Besbas N, Johnson S, et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24:687–96.

    Article  PubMed  Google Scholar 

  58. Saland JM, Ruggenenti P, Remuzzi G, Consensus Study Group. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2009;20(5):940–9.

    Article  PubMed  CAS  Google Scholar 

  59. Mache CJ, Acham-Roschitz B, Fremeaux-Bacchi V, et al. Complement inhibitor eculizumab in atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4:1312–6.

    Article  PubMed  CAS  Google Scholar 

  60. Nürnberger J, Witzke O, et al. Eculizumab for atypical hemolytic-uremic syndrome. N Engl J Med. 2009;360(5):542–4.

    Article  PubMed  Google Scholar 

  61. Hillmen P, Elebute M, Kelly R, Urbano-Ispizua A, Hill A, Rother RP, Khursigara G, Fu CL, Omine M, Browne P, Rosse W. Long-term effect of the complement inhibitor eculizumab on kidney function in patients with paroxysmal nocturnal hemoglobinuria. Am J Hematol. 2010;85(8):553–9. Erratum in: Am J Hematol 2010;85(11):911.

    Article  PubMed  CAS  Google Scholar 

  62. Maloney DG. Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med. 2012;366(21):2008–16.

    Article  PubMed  CAS  Google Scholar 

  63. Liang Y, Zhang L, Gao J, Hu D, Ai Y. Rituximab for children with immune thrombocytopenia: a systematic review. PLoS One. 2012;7(5):e36698.

    Article  PubMed  CAS  Google Scholar 

  64. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  PubMed  CAS  Google Scholar 

  65. Skerka C, Lauer N, Weinberger AA, Keilhauer CN, Sühnel J, Smith R, Schlötzer-Schrehardt U, Fritsche L, Heinen S, Hartmann A, Weber BH, Zipfel PF. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol. 2007;44(13):3398–406.

    Article  PubMed  CAS  Google Scholar 

  66. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT, Genetic Factors in AMD Study Group. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357(6):553–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of the authors is supported by the Deutsche Forschungsgemeinschaft (DFG, Sk46;Zi 432), the Bundesministerium für Forschung und Technologie (BMBF), Pro Retina Foundation Germany. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 2012-305608 “European Consortium for High-Throughput Research in Rare Kidney Diseases (EURenOmics).”

The authors have no conflict of interest. We thank Sanjeev Sethi, MD, PhD, for providing images of kidney biopsies of aHUS patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Zipfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zipfel, P.F., Skerka, C. (2014). Thrombotic Microangiopathies: Thrombus Formation Due to Common or Related Mechanisms?. In: Fervenza, F., Lin, J., Sethi, S., Singh, A. (eds) Core Concepts in Parenchymal Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8166-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8166-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8165-2

  • Online ISBN: 978-1-4614-8166-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics