Skip to main content

Interference Single Electron Transistors Based on Quantum Dot Molecules

  • Chapter
  • First Online:
Quantum Dot Molecules

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 14))

  • 1741 Accesses

Abstract

We consider nanojunctions in the single electron tunnelling regime which, due to a high degree of spatial symmetry, have a degenerate many-body spectrum. They comprise single molecule quantum dots as well as artificial quantum dot molecules. As a consequence, interference phenomena which cause a current blocking can occur at specific values of the bias and gate voltage. We present here a general formalism providing necessary and sufficient conditions for interference blockade also in the presence of spin-polarized leads. As examples we analyze a triple quantum dot as well as a benzene molecule single electron transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the equilibrium chemical potential is not set to zero, the many-body energy spectrum should be substituted with the spectrum of the many-body free energy (H sysμ 0 N) where μ 0 is the chemical potential of the leads at zero bias. The rest of the argumentation remains unchanged.

  2. 2.

    The assumption of a spinless system is not restrictive for parallel polarized leads and transitions between a spin singlet and a doublet since the different spin sectors decouple from each other.

  3. 3.

    This denomination of the Pariser–Parr–Pople Hamiltonian is more common in the solid state community.

  4. 4.

    The corresponding eigenvalue depends on the symmetry of the atomic (quantum dot) wave function with respect to the molecular (artificial molecule) plane: \(\hslash \) or 0 for symmetric or antisymmetric wave functions, respectively.

References

  1. Young, T.: Phil. Trans. Roy. Soc. Lond. 94, 12 (1804)

    Google Scholar 

  2. Jönsson, C.: Z. Physik 161, 454 (1961)

    Article  Google Scholar 

  3. Merli, P.G., Missiroli, G.F., Pozzi, G.: Am. J. Phys. 44, 306 (1976)

    Article  Google Scholar 

  4. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Nature 401, 680 (1999)

    Article  CAS  Google Scholar 

  5. Yacoby, A., Heiblum, M., Mahalu, D., Shtrikman, H.: Phys. Rev. Lett. 74, 4047 (1995)

    Article  CAS  Google Scholar 

  6. Gustavsson, S., Leturcq, R., Studer, M., Ihn, T., Ensslin, K.: Nano Lett. 8, 2547 (2008)

    Article  CAS  Google Scholar 

  7. Gutiérrez, R., Grossmann, F., Schmidt, R.: ChemPhysChem 4, 1252 (2003)

    Article  Google Scholar 

  8. Cardamone, D.V., Stafford, C.A., Mazumdar, S.: Nano Lett. 6, 2422 (2006)

    Article  CAS  Google Scholar 

  9. Ke, S.-H., Yang, W., Baranger, U.: Nano Lett. 8, 3257 (2008)

    Article  CAS  Google Scholar 

  10. Quian, Z., Li, R., Zhao, X., Hou, S., Sanvito, S.: Phys. Rev. B 78, 113301 (2008)

    Article  Google Scholar 

  11. Solomon, G.C., Andrews, D.Q., Hansen, T., Goldsmith, R.H., Wasielewski, M.R., Duyne, R.P.V., Ratner, M.A.: J. Chem. Phys. 129, 054701 (2008)

    Article  Google Scholar 

  12. Markussen, T., Stadler, R., Thygesen, K.S.: Nano Lett. 10, 4260 (2010)

    Article  CAS  Google Scholar 

  13. Tsuji, Y., Staykov, A., Yoshizawa, K.: J. Am. Chem. Soc. 133, 5955 (2011)

    Article  CAS  Google Scholar 

  14. Markussen, T., Stadler, R., Thygesen, K.S.: Phys. Chem. Chem. Phys. 13, 14311 (2011)

    Article  CAS  Google Scholar 

  15. Ernzerhof, M.J.: Chem. Phys. 135, 014104 (2011)

    Google Scholar 

  16. Taniguchi, M., Tsutsui, M., Mogi, R., Sugawara, T., Tsuji, Y., Yoshizawa, K., Kawai, T.: J. Am. Chem. Soc. 133, 11426 (2011)

    Article  CAS  Google Scholar 

  17. Aradhya, S.V., Meisner, J.S., Krikorian, M., Ahn, S., Parameswaran, R., Steigerwald, M.L., Nuckolls, C., Venkataraman, L.: Nano Lett. 12, 1643 (2012)

    Article  CAS  Google Scholar 

  18. Guédon, C.M., Valkenier, H., Markussen, T., Thygesen, K.S., Hummelen, J.C., van der Molen, S.J.: Nature Nanotechnology 7, 304 (2012)

    Article  Google Scholar 

  19. Begemann, G., Darau, D., Donarini, A., Grifoni, M.: Phys. Rev. B 77, 201406(R) (2008); 78, 089901(E) (2008)

    Google Scholar 

  20. Darau, D., Begemann, G., Donarini, A., Grifoni, M.: Phys. Rev. B 79, 235404 (2009). Copyright (2009) by the American Physical Society

    Google Scholar 

  21. Donarini, A., Begemann, G., Grifoni, M.: Nano Lett. 9, 2897 (2009). Copyright (2009) by the American Chemical Society

    Google Scholar 

  22. Donarini, A., Begemann, G., Grifoni, M.: Phys. Rev. B 82, 125451 (2010). Copyright (2010) by the American Physical Society

    Google Scholar 

  23. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  24. Awschalom, D.D., Flatté, M.E.: Nat. Phys. 3, 153 (2007)

    Article  CAS  Google Scholar 

  25. Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., Ohtani, K.: Nature 408, 944 (2000)

    Article  CAS  Google Scholar 

  26. Golovach, V.N., Borhani, M., Loss, D.: Phys. Rev. B 74, 165319 (2006)

    Article  Google Scholar 

  27. Levitov, L., Rashba, E.: Phys. Rev. B 67, 115324 (2003)

    Article  Google Scholar 

  28. Debald, S., Emary, C.: Phys. Rev. Lett. 94, 226803 (2005)

    Article  Google Scholar 

  29. Walls, J.: Phys. Rev. B 76, 195307 (2007)

    Article  Google Scholar 

  30. Nowack, K.C., Koppens, F.H.L., Nazarov, Yu.V., Vandersypen, L.M.K.: Science 318, 1430 (2007)

    Article  CAS  Google Scholar 

  31. Emary, C.: Phys. Rev. B 76, 245319 (2007)

    Article  Google Scholar 

  32. Busl, M., Sanchez, R., Platero, G.: Phys. Rev. B 81, 121306(R) (2010)

    Google Scholar 

  33. Braig, S., Brouwer, P.W.: Phys. Rev. B 71, 195324 (2005)

    Article  Google Scholar 

  34. Gurvitz, S.A., Prager, Ya.S.: Phys. Rev. B 53, 15932 (1996)

    Google Scholar 

  35. Braun, M., König, J., Martinek, J.: Phys. Rev. B 70, 195345 (2004)

    Article  Google Scholar 

  36. Wunsch, B., Braun, M., König, J., Pfannkuche, D.: Phys. Rev. B 72, 205319 (2005)

    Article  Google Scholar 

  37. Donarini, A., Grifoni, M., Richter, K.: Phys. Rev. Lett. 97, 166801 (2006)

    Article  Google Scholar 

  38. Harbola, U., Esposito, M., Mukamel, S.: Phys. Rev. B 74, 235309 (2006)

    Article  Google Scholar 

  39. Mayrhofer, L., Grifoni, M.: Eur. Phys. J. B 56, 107 (2007)

    Article  CAS  Google Scholar 

  40. Koller, S., Mayrhofer, L., Grifoni, M.: New J. Phys. 9, 348 (2007)

    Article  Google Scholar 

  41. Pedersen, J., Lassen, B., Wacker, A., Hettler, M.: Phys. Rev. B 75, 235314 (2007)

    Article  Google Scholar 

  42. Hornberger, R., Koller, S., Begemann, G., Donarini, A., Grifoni, M.: Phys. Rev. B 77 245313 (2008)

    Article  Google Scholar 

  43. Schultz, M.G., von Oppen, F.: Phys. Rev. B 80, 033302 (2009)

    Article  Google Scholar 

  44. Pariser, R., Parr, R.G.: J. Chem. Phys. 21, 466 (1953)

    Article  CAS  Google Scholar 

  45. Pople, J.A.: Trans. Faraday Soc. 49, 1375 (1953)

    Article  CAS  Google Scholar 

  46. Linderberg, J., Öhrn, Y.: J. Chem. Phys. 49, 716 (1968)

    Article  CAS  Google Scholar 

  47. Hettler, M.H., Wenzel, W., Wegewijs, M.R., Schoeller, H.: Phys. Rev. Lett. 90, 076805 (2003)

    Article  CAS  Google Scholar 

  48. Barford, W.: Electronic and Optical Properties of Conjugated Polymers. Clarendon Press, Oxford (2005)

    Google Scholar 

  49. Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Brédas, J.-L., Stuhr-Hansen, N., Hedegård, P., Bjørnholm, T.: Nature 425, 698 (2003)

    Article  CAS  Google Scholar 

  50. Kaasbjerg, K., Flensberg, K.: Nano Lett. 8, 3809 (2008)

    Article  CAS  Google Scholar 

  51. Kaasbjerg, K., Flensberg, K.: Phys. Rev. B 84, 115457 (2011)

    Article  Google Scholar 

  52. Delgado, F., Shim, Y.-P., Korkusinski, M., Gaudreau, L., Studenikin, S.A., Sachrajda, A.S., Hawrylak, P.: Phys. Rev. Lett. 101, 226810 (2008)

    Article  CAS  Google Scholar 

  53. Gong, W., Zheng, Y., Lü, T.: Appl. Phys. Lett. 92, 042104 (2008)

    Article  Google Scholar 

  54. Kostyrko, T., Bułka, B.R.: Phys. Rev. B 79, 075310 (2009)

    Article  Google Scholar 

  55. Shim, Y.-P., Delgado, F., Hawrylak, P.: Phys. Rev. B 80, 115305 (2009)

    Article  Google Scholar 

  56. Pöltl, C., Emary, C., Brandes, T.: Phys. Rev. B 80, 115313 (2009)

    Article  Google Scholar 

  57. Gaudreau, L., Studenikin, S.A., Sachrajda, A.S., Zawadzki, P., Kam, A., Lapointe, J., Korkusinski, M., Hawrylak, P.: Phys. Rev. Lett. 97, 036807 (2006)

    Article  CAS  Google Scholar 

  58. Rogge, M.C., Haug, R.J.: Phys. Rev. B 78, 153310 (2008)

    Article  Google Scholar 

  59. Gaudreau, L., Sachrajda, A.S., Studenikin, S., Kam, A., Delgado, F., Shim, Y.P., Korkusinski, M., Hawrylak, P.: Phys. Rev. B 80, 075415 (2009)

    Article  Google Scholar 

  60. Austing, G., Payette, C., Yu, G., Gupta, J., Aers, G., Nair, S., Amaha, S., Tarucha, S.: Jpn. J. Appl. Phys. 49, 04DJ03 (2010)

    Google Scholar 

  61. Sobczyk, S., Donarini, A., Grifoni, M.: Phys. Rev. B 85, 205408 (2012)

    Article  Google Scholar 

  62. Donarini, A., Siegert, B., Sobzyk, S., Grifoni, M.: Phys. Rev. B 86, 155451 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Georg Begemann and Dana Darau for their important contribution to the development of the research presented in this chapter. We also acknowledge the German Research Foundation (DFG) for the financial support through the research programs SPP 1243, SFB 689 and GRK 1570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Donarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Donarini, A., Grifoni, M. (2014). Interference Single Electron Transistors Based on Quantum Dot Molecules. In: Wu, J., Wang, Z. (eds) Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8130-0_7

Download citation

Publish with us

Policies and ethics