Skip to main content

Optical Properties of Lateral InGaAs Quantum Dot Molecules Single- and Bi-Layers

  • Chapter
  • First Online:
Quantum Dot Molecules

Abstract

Growth of InGaAs nanostructures by molecular beam epitaxy using partial-cap and regrowth technique results in an ensemble of lateral quantum dot molecules (QDMs). Each QDM comprises a large, central quantum dot and several small, satellite quantum dots which emit at different energies and exhibit qualitatively different optical behaviors. This chapter reviews, explains, and discusses the various fundamental aspects of lateral QDM single layers: the nucleation mechanism, the photoluminescent spectra, and the unique bimodal optical characteristics. The chapter ends by demonstrating the usefulness of lateral QDM bi-layers as a promising broadband near-infrared material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., Petroff, P.M.: Appl. Phys. Lett. 63, 3203 (1993)

    Article  CAS  Google Scholar 

  2. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, Chichester (1999)

    Google Scholar 

  3. Wang, Z.M. (ed.): Self-Assembled Quantum Dots. Lecture Notes in Nanoscale Science and Technology. Springer, New York (2007)

    Google Scholar 

  4. Watanabe, K., Koguchi, N., Gotoh, Y.: Jpn. J. Appl. Phys. 39, L79 (2000)

    Article  CAS  Google Scholar 

  5. Wang, L., et al.: New J. Phys. 10, 045010 (2008)

    Article  Google Scholar 

  6. Wang, L., Rastelli, A., Kiravittaya, S., Benyoucef, M., Schmidt, O.G.: Adv. Mater. 21, 2601 (2009)

    Article  CAS  Google Scholar 

  7. Schedelbeck, G., Wegscheider, W., Bichler, M., Abstreiter, G.: Science 278, 1792 (1997)

    Article  CAS  Google Scholar 

  8. Bayer, M., Hawrylak, P., Hinzer, K., Fafard, S., Korkusinski, M., Wasilewski, Z.R., Stern, O., Forchel, A.: Science 291, 451 (2001)

    Article  CAS  Google Scholar 

  9. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  CAS  Google Scholar 

  10. Songmuang, R., Kiravittaya, S., Schmidt, O.G.: Appl. Phys. Lett. 82, 2892 (2003)

    Article  CAS  Google Scholar 

  11. Lee, J.H., Wang, Z.M., Strom, N.W., Mazur, Y.I., Salamo, G.J.: Appl. Phys. Lett. 89, 202101 (2006)

    Article  Google Scholar 

  12. Strom, N.W., Wang, Z.M., Lee, J.H., AbuWaar, Z.Y., Mazur, Y.I., Salamo, G.J.: Nanoscale Res. Lett. 2, 112 (2007)

    Article  CAS  Google Scholar 

  13. Suraprapapich, S., Thainoi, S., Kanjanachuchai, S., Panyakeow, S.: J. Vac. Sci. Technol. B 23, 1217 (2005) [Ibid. 24, 1665 (2006)]

    Article  CAS  Google Scholar 

  14. Siripitakchai, N., Suraprapapich, S., Thainoi, S., Kanjanachuchai, S., Panyakeow, S.: J. Cryst. Growth 301, 812 (2007)

    Article  Google Scholar 

  15. Suraprapapich, S., Kanjanachuchai, S., Thainoi, S., Panyakeow, S.: Microelectron. Eng. 83, 1526 (2006)

    Article  CAS  Google Scholar 

  16. Lippen, T.v., Nötzel, R., Hamhuis, G., Wolter, J.: Appl. Phys. Lett. 85, 118 (2004)

    Article  Google Scholar 

  17. Lippen, T.v., Silov, A.Y., Notzel, R.: Phys. Rev. B 75, 115414 (2007)

    Article  Google Scholar 

  18. Thet, C.C., Sanorpim, S., Panyakeow, S., Kanjanachuchai, S.: Semicond. Sci. Technol. 23, 055007 (2008)

    Article  Google Scholar 

  19. Welsch, H., Kipp, T., Köppen, T., Heyn, C., Hansen, W.: Semicond. Sci. Technol. 23, 045016 (2008)

    Article  Google Scholar 

  20. Himwas, C., Panyakeow, S., Kanjanachuchai, S.: Nanoscale Res. Lett. 6, 496 (2011)

    Article  Google Scholar 

  21. Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G., Bocchi, C.: J. Appl. Phys. 108, 064324 (2010)

    Article  Google Scholar 

  22. Nabetani, Y., Ishikawa, T., Noda, S., Sasaki, A.: J. Appl. Phys. 76, 347 (1994)

    Article  CAS  Google Scholar 

  23. Patanasemakul, N., Panyakeow, S., Kanjanachuchai, S.: Nanoscale Res. Lett. 7, 207 (2012)

    Article  Google Scholar 

  24. Krenner, H.J., Sabathil, M., Clark, E.C., Kress, A., Schuh, D., Bichler, M., Abstreiter, G., Finley, J.J.: Phys. Rev. Lett. 94, 057402 (2005)

    Article  CAS  Google Scholar 

  25. Scheibner, M., Yakes, M., Bracker, A.S., Ponomarev, I.V., Doty, M.F., Hellberg, C.S., Whitman, L.J., Reinecke, T.L., Gammon, D.: Nat. Phys. 4, 291 (2008)

    Article  CAS  Google Scholar 

  26. Beirne, G.J., Hermannstädter, C., Wang, L., Rastelli, A., Schmidt, O.G., Michler, P.: Phys. Rev. Lett. 96, 137401 (2006)

    Article  CAS  Google Scholar 

  27. Kanjanachuchai, S., Thudsalingkarnsakul, N., Siripitakchai, N., Changmoang, P., Thainoi, S., Panyakeow, S.: Microelectron. Eng. 87, 1352 (2010)

    Article  CAS  Google Scholar 

  28. Grundmann, M., Ledentsov, N.N., Stier, O., Bimberg, D., Ustinov, V.M., Kop'ev, P.S., Alferov, Z.I.: Appl. Phys. Lett. 68, 979 (1996)

    Article  CAS  Google Scholar 

  29. Mukai, K., Ohtsuka, N., Shoji, H., Sugawara, M.: Appl. Phys. Lett. 68, 3013 (1996)

    Article  CAS  Google Scholar 

  30. Lambkin, J.D., Dunstan, D.J., Homewood, K.P., Howard, L.K., Emeny, M.T.: Appl. Phys. Lett. 57, 1986 (1990)

    Article  CAS  Google Scholar 

  31. Heitz, R., Mukhametzhanov, I., Madhukar, A., Hoffmann, A., Bimberg, D.: J. Electron. Mater. 28, 520 (1999)

    Article  CAS  Google Scholar 

  32. Fafard, S., Raymond, S., Wang, G., Leon, R., Leonard, D., Charbonneau, S., Merz, J.L., Petroff, P.M., Bowers, J.E.: Surf. Sci. 361–362, 778 (1996)

    Article  Google Scholar 

  33. Szafran, B., Peeters, F.M.: Phys. Rev. B 76, 195442 (2007)

    Article  Google Scholar 

  34. Peng, J., Hermannstädter, C., Witzany, M., Heldmaier, M., Wang, L., Kiravittaya, S., Rastelli, A., Schmidt, O.G., Michler, P., Bester, G.: Phys. Rev. B 81, 205315 (2010)

    Article  Google Scholar 

  35. Thongkamkoon, N., Patanasemakul, N., Siripitakchai, N., Thainoi, S., Panyakeow, S., Kanjanachuchai, S.: J. Cryst. Growth 323, 206 (2011)

    Article  CAS  Google Scholar 

  36. Varshni, Y.P.: Physica 34, 149 (1967)

    Article  CAS  Google Scholar 

  37. Yeo, I., Dong Song, J., Lee, J.: Appl. Phys. Lett. 99, 151909 (2011)

    Article  Google Scholar 

  38. Brusaferri, L., et al.: Appl. Phys. Lett. 69, 3354 (1996)

    Article  CAS  Google Scholar 

  39. Lubyshev, D.I., Gonzalez-Borrero Jr., P.P., Marega, E., Petitprez Jr., E., La Scala, N., Basmaji, P.: Appl. Phys. Lett. 68, 205 (1996)

    Article  CAS  Google Scholar 

  40. Polimeni, A., Patane, A., Henini, M., Eaves, L., Main, P.C.: Phys. Rev. B 59, 5064 (1999)

    Article  CAS  Google Scholar 

  41. Xu, Z.Y., et al.: Phys. Rev. B 54, 11528 (1996)

    Article  CAS  Google Scholar 

  42. Yang, T., Tatebayashi, J., Tsukamoto, S., Nishioka, M., Arakawa, Y.: Appl. Phys. Lett. 84, 2817 (2004)

    Article  CAS  Google Scholar 

  43. Chia, C.K., Chua, S.J., Dong, J.R., Teo, S.L.: Appl. Phys. Lett. 90, 061101 (2007)

    Article  Google Scholar 

  44. Ngo, C.Y., Yoon, S.F., Fan, W.J., Chua, S.J.: Appl. Phys. Lett. 90, 113103 (2007)

    Article  Google Scholar 

  45. Kissel, H., Muller, U., Walther, C., Masselink, W.T., Mazur, Y.I., Tarasov, G.G., Lisitsa, M.P.: Phys. Rev. B 62, 7213 (2000)

    Article  CAS  Google Scholar 

  46. Lin, C.-F., Lee, B.-L.: Appl. Phys. Lett. 71, 1598 (1997)

    Article  CAS  Google Scholar 

  47. Haffouz, S., Raymond, S., Lu, Z.G., Barrios, P.J., Roy-Guay, D., Wu, X., Liu, J.R., Poitras, D., Wasilewski, Z.R.: J. Cryst. Growth 311, 1803 (2009)

    Article  CAS  Google Scholar 

  48. Greenwood, P.D.L., et al.: IEEE J. Sel. Topics Quantum Electron. 16, 1015 (2010)

    Article  CAS  Google Scholar 

  49. Schmitt, J.M.: IEEE J. Sel. Topics Quantum Electron. 5, 1205 (1999)

    Article  CAS  Google Scholar 

  50. Akahane, K., Yamamoto, N.: J. Cryst. Growth 323, 154 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AFM data analyses are performed using Gwyddion. This work is supported by Thailand Research Fund (RSA5580015, DPG5380002); Nanotec; Integrated Innovation Academic Center (IIAC), Chulalongkorn University Centenary Academic Development Project; and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (CU56-EN09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songphol Kanjanachuchai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanjanachuchai, S. et al. (2014). Optical Properties of Lateral InGaAs Quantum Dot Molecules Single- and Bi-Layers. In: Wu, J., Wang, Z. (eds) Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8130-0_3

Download citation

Publish with us

Policies and ethics