Skip to main content

Next Generation Clinical Diagnostics: The Sequence of Events

  • Chapter
  • First Online:
Molecular Diagnostics

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 2248 Accesses

Abstract

The development of automated sequencing platforms based upon capillary electrophoresis and fluorescently labeled terminator bases made it possible to generate the first draft sequence of the human genome. However, what started as an effort to develop new technologies to sequence entire human genomes cheaper and faster than capillary electrophoresis-based technologies has engendered a sequencing revolution that has resulted in tremendous increases in sequence output capacity. Since the introduction of these so-called next-generation sequencing technologies in 2006, the sequencing output of various platforms has been increasing greater than fivefold every year. This has led to dramatic increases in sequencing output and correspondingly decreased costs for DNA sequencing. These sequencing platforms will quickly make whole genome sequencing so affordable that it will inevitably become a routine part of clinical practice. In this chapter we will review the sequencing revolution and discuss the potential clinical applications of this transformative technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.

    Article  PubMed  CAS  Google Scholar 

  2. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA. 1977; 74(2):560–4.

    Article  PubMed  CAS  Google Scholar 

  3. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74(12):5463–7.

    Article  PubMed  CAS  Google Scholar 

  4. Smith LM, et al. The synthesis of oligonucleotides containing an aliphatic amino group at the 5' terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res. 1985;13(7):2399–412.

    Article  PubMed  CAS  Google Scholar 

  5. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  PubMed  CAS  Google Scholar 

  6. Tsuda T, et al. Separation of nucleotides by high-voltage capillary electrophoresis. J Appl Biochem. 1983;5(4–5):330–6.

    PubMed  CAS  Google Scholar 

  7. Venter JC, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  PubMed  CAS  Google Scholar 

  8. Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  PubMed  CAS  Google Scholar 

  9. Szybalski W. From the double-helix to novel approaches to the sequencing of large genomes. Gene. 1993;135(1–2):279–90.

    Article  PubMed  CAS  Google Scholar 

  10. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  11. Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286–90.

    Article  PubMed  CAS  Google Scholar 

  12. Venter JC. Shotgunning the human genome: a personal view. Encyclopedia of Life Science. 2006.

    Google Scholar 

  13. Fink L, Collins FS. The human genome project: view from the national institutes of health. J Am Med Womens Assoc. 1997; 52(1):4–7, 15.

    Google Scholar 

  14. Nakano M, et al. Single-molecule reverse transcription polymerase chain reaction using water-in-oil emulsion. J Biosci Bioeng. 2005;99(3):293–5.

    Article  PubMed  CAS  Google Scholar 

  15. Williams R, et al. Amplification of complex gene libraries by emulsion PCR. Nat Methods. 2006;3(7):545–50.

    Article  PubMed  CAS  Google Scholar 

  16. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  17. Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

    PubMed  CAS  Google Scholar 

  18. Bentley DR, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

    Article  PubMed  CAS  Google Scholar 

  19. McKernan KJ, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 2009;19(9):1527–41.

    Article  PubMed  CAS  Google Scholar 

  20. Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    Article  PubMed  CAS  Google Scholar 

  21. Bowers J, et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods. 2009;6(8):593–5.

    Article  PubMed  CAS  Google Scholar 

  22. Eid J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.

    Article  PubMed  CAS  Google Scholar 

  23. Flusberg BA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5.

    Article  PubMed  CAS  Google Scholar 

  24. Maglia G, et al. Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol. 2010;475:591–623.

    Article  PubMed  CAS  Google Scholar 

  25. Lunshof JE, et al. Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin Neurosci. 2010;12(1):47–60.

    PubMed  Google Scholar 

  26. Albert TJ, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods. 2007;4(11):903–5.

    Article  PubMed  CAS  Google Scholar 

  27. Gnirke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  28. Tewhey R, et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol. 2009;27(11):1025–31.

    Article  PubMed  CAS  Google Scholar 

  29. MacConaill LE, et al. Clinical implementation of comprehensive strategies to characterize cancer genomes: opportunities and challenges. Cancer Discov. 2011;1(4):297–311.

    Article  PubMed  CAS  Google Scholar 

  30. Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  PubMed  CAS  Google Scholar 

  31. Smith RJH, Sheffield AM, Van Camp G. Nonsyndromic hearing loss and deafness, DFNA3. 1998 Sep 28, 2012 Apr 19 [cited 2012]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1536/

  32. Schouten JP, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57.

    Article  PubMed  Google Scholar 

  33. Ijssel P, Ylstra B. Oligonucleotide array comparative genomic hybridization. Methods Mol Biol. 2007;396:207–21.

    Article  PubMed  Google Scholar 

  34. Lockwood WW, et al. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet. 2006;14(2):139–48.

    Article  PubMed  CAS  Google Scholar 

  35. Gross SJ, Pletcher BA, Monaghan KG. Carrier screening in individuals of Ashkenazi Jewish descent. Genet Med. 2008;10(1):54–6.

    Article  PubMed  Google Scholar 

  36. Ku CS, Naidoo N, Pawitan Y. Revisiting Mendelian disorders through exome sequencing. Hum Genet. 2011;129(4):351–70.

    Article  PubMed  Google Scholar 

  37. Chen W, et al. Breakpoint analysis of balanced chromosome rearrangements by next-generation paired-end sequencing. Eur J Hum Genet. 2010;18(5):539–43.

    Article  PubMed  CAS  Google Scholar 

  38. Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and disease. Annu Rev Med. 2012;63:35–61.

    Article  PubMed  CAS  Google Scholar 

  39. Berg JS, Khoury MJ, Evans JP. Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet Med. 2011;13(6):499–504.

    Article  PubMed  Google Scholar 

  40. Kaminsky EB, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med. 2011;13(9):777–84.

    Article  PubMed  Google Scholar 

  41. Wood HM, et al. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. Nucleic Acids Res. 2010;38(14):e151.

    Article  PubMed  Google Scholar 

  42. Newborn screening: toward a uniform screening panel and system. Genet Med. 2006;8(Suppl 1):1S–252S.

    Google Scholar 

  43. Cox DW, Roberts EA. Wilson disease. 1999 Oct 22, 2006 Jan 24 [cited 2012]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1512/

  44. Kupferschmidt K. Danish Archipelago launches mass sequencing plan. ScienceInsider. 2011

    Google Scholar 

  45. Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203.

    Article  CAS  Google Scholar 

  46. Cock PJ, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38(6):1767–71.

    Article  PubMed  CAS  Google Scholar 

  47. Langmead B, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    Article  PubMed  Google Scholar 

  48. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  PubMed  CAS  Google Scholar 

  49. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.

    Article  PubMed  CAS  Google Scholar 

  50. Li R, et al. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4.

    Article  PubMed  CAS  Google Scholar 

  51. Li R, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.

    Article  PubMed  CAS  Google Scholar 

  52. Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  Google Scholar 

  53. Robinson JT, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

    Article  PubMed  CAS  Google Scholar 

  54. DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.

    Article  PubMed  CAS  Google Scholar 

  55. McKenna A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article  PubMed  CAS  Google Scholar 

  56. Goya R, et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics. 2010;26(6):730–6.

    Article  PubMed  CAS  Google Scholar 

  57. Sherry ST, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.

    Article  PubMed  CAS  Google Scholar 

  58. International HapMap Consortium. The international HapMap project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  59. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  PubMed  Google Scholar 

  60. Online Mendelian Inheritance in Man, OMIM. 2012.

    Google Scholar 

  61. Stenson PD, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–81.

    Article  PubMed  CAS  Google Scholar 

  62. GeneTests Medical Genetics Information Resource. 2012.

    Google Scholar 

  63. Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11(5):863–74.

    Article  PubMed  CAS  Google Scholar 

  65. Department of Health and Human Services. Oversight of Laboratory Developed Tests; Public Meeting; Request for Comments, Department of Health and Human Services, Editor. 2010. Federal Register http://www.gpo.gov. p. 34463–4.

  66. CMS.gov. Clinical Laboratory Improvement Amendments (CLIA). Centers for Medicare and Medicaid Services. Available from: http://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/index.html

  67. Vorhaus D. The FDA and DTC genetic testing: setting the record straight. In: Vorhaus D, editor. Genomics law report. Charlotte, NC: Robinson Bradshaw and Hinson; 2011.

    Google Scholar 

  68. American College of Medical Genetics. Points to consider in the clinical application of genomic sequencing [Policy Statement]. 2012. Available from: http://www.acmg.net/StaticContent/PPG/Clinical_Application_of_Genomic_Sequencing.pdf

  69. Gargis AS, et al. Next generation sequencing – standardization of clinical testing (Nex-StoCT): approaches to quality assurance and complying with regulatory and professional standards. 2011. Available from: http://www.cdc.gov/osels/lspppo/pdf/2011AMPPoster.pdf

  70. United States Patent and Trademark Office Commerce. Utility examination guidelines. Federal Register Online via the Government Printing Office. 2001. http://www.gpo.gov. p. 1092–9.

  71. Association For Molecular Pathology. Association for molecular pathology, et al., vs. United States patent and trademark office, et al. 2010. Case 1:09-cv-04515-RWS.

    Google Scholar 

  72. United States Court of Appeals for the Federal Circuit. Appeal from the United States District Court for the Southern District of New York in Case No. 09-CV-4515, Senior Judge Robert W. Sweet. United States Court of Appeals for the Federal Circuit. 2011. http://www.cafc.uscourts.gov

  73. Supreme Court of the United States. Mayo collaborative services, DBA Mayo Medical Laboratories, et Al. v. Prometheus Laboratories, INC. Supreme Court of the United States. 2011. http://www.supremecourt.gov

  74. Supreme Court of the United States. Certiorari – summary despositions. Supreme Court of the United States. 2012. http://www.supremecourt.gov/orders. p. 11–725.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Hoppman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoppman, N., Smith, D.I., Klee, E.W., Ferber, M.J. (2014). Next Generation Clinical Diagnostics: The Sequence of Events. In: Highsmith, Jr., W. (eds) Molecular Diagnostics. Molecular and Translational Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8127-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8127-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8126-3

  • Online ISBN: 978-1-4614-8127-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics