Skip to main content
  • 2128 Accesses

Abstract

This chapter treats nanowire FETs as applied to the green energy. The discussion is carried out from two perspectives, namely the renewable energy and the efficiency of energy consumption. In this context, the nanowire tunneling field effect transistor (NTFET) is considered as the low power device and its ON and OFF states are elaborated, based upon the voltage controlled energy band. Moreover, the operation of NTFETs is analyzed in terms of the size and shape of the nanowire, doping, multi-junction structure, and the materials used. In addition, nanowire solar cell is elaborated based upon the photo-generation, separation, and collection of e-h pairs. In particular, the enhanced absorption of solar radiation is highlighted via decreased reflectance, light trapping, and the resonance effect. Additional, the collection efficiency of photo-generated e-h pairs in nanowires is discussed based upon the cell structure, decoupling of the absorption and collection processes, and the types of junctions. Finally the process flows for producing vertical nanowires are presented, together with the fabrication of the nanowire photo-cells therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMOS:

Complementary MOS

FET:

Field-effect transistor

SS:

Subthreshold swing

IMOS:

Impact-ionization MOS

TFET:

Tunneling field-effect transistor

SOI:

Silicon-on-insulator

SON:

Silicon-on-nothing

LMR:

Leaky-mode resonance

VLS:

Vapor–liquid–solid

AAO:

Anodic aluminum oxide

CIGS:

Copper indium gallium selenide

VSS:

Vapor–solid–solid

PECVD:

Plasma-enhanced chemical vapor deposition

ITO:

Indium tin oxide

EQE:

External quantum efficiency

MOCVD:

Metal–organic chemical vapor deposition

MBE:

Molecular beam epitaxy

CBE:

Chemical beam epitaxy

CVD:

Chemical vapor deposition

PCBM:

Phenyl-C61-butyric acid methyl ester

References

  1. Wikipedia Global warming. http://en.wikipedia.org/wiki/Global_warming.

  2. Gopalakrishnan, K., Griffin, P. B., & Plummer, J. D. (2002). I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q. IEDM Tech Dig 289.

    Google Scholar 

  3. Choi, W. Y., Park, B.-G., Lee, J. D., & King Liu, T.-J. (2007). Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Letters, 28(8), 743.

    Article  Google Scholar 

  4. Fair, R. B., & Wivell, H. W. (1976). Zener and avalanche breakdown in as-implanted low voltage Si n-p junctions. IEEE Transactions on Electron Devices, 23, 512.

    Article  Google Scholar 

  5. Vallett, A. L., Minassian, S., Kaszuba, P., Datta, S., Redwing, J. M., & Mayer, H. S. (2010). Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. Nano Letters, 10, 4813.

    Article  Google Scholar 

  6. Chen, Z. X., Yu, H. Y., Singh, N., Shen, N. S., Sayanthan, R. D., Lo, G. Q., et al. (2009). Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Letters, 30(7), 754.

    Article  Google Scholar 

  7. Kwong, D.-L., Li, X., Sun, Y., Ramanathan, G., Chen, Z. X., Wong, S. M., et al. (2012). Vertical silicon nanowire platform for low power electronics and clean energy applications. Journal of Nanotechnology, 2012, 492121.

    Article  Google Scholar 

  8. Yang, B., Buddharaju, K. D., Teo, S. H. G., Singh, N., Lo, G. Q., & Kwong, D. L. (2008). Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Letters, 29(7), 791.

    Article  Google Scholar 

  9. Lee, M., Jeon, Y., Jung, J.-C., Koo, S.-M., & Kim, S. (2012). Multiple silicon nanowire complementary tunnel transistors for ultralow-power flexible logic applications. Applied Physics Letters, 100, 253506.

    Article  Google Scholar 

  10. Verhulst, A. S., Vandenberghe, W. G., Maex, K., & Groeseneken, G. (2008). Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. Journal of Applied Physics, 104, 064514.

    Article  Google Scholar 

  11. Ionescu, A. M., & Riel, H. (2011). Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 479, 329.

    Article  Google Scholar 

  12. Tomioka, K., & Fukui, T. (2011). Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Applied Physics Letters, 98, 083114.

    Article  Google Scholar 

  13. Sunlight Wikipedia, http://en.wikipedia.org/wiki/Sunlight.

  14. Green, M. A., & Keevers, M. J. (1995). Optical properties of intrinsic silicon at 300 K. Progress in Photovoltaics: Research and Applications, 3, 189.

    Article  Google Scholar 

  15. Kelzenberg, M. D., Boettcher, S. W., Petykiewicz, J. A., Turner-Evans, D. B., Putnam, M. C., Warren, E. L., et al. (2010). Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 9, 239.

    Article  Google Scholar 

  16. Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., & Rand, J. (2007). Silicon nanowire solar cells. Applied Physics Letters, 91, 233117.

    Article  Google Scholar 

  17. Schmidt, V., Wittemann, J. V., & Gösele, U. (2010). Growth, thermodynamics, and electrical properties of silicon nanowires. Chemical Review, 110(1), 361.

    Article  Google Scholar 

  18. Wacaser, B. A., Dick, K. A., Johansson, J., Borgström, M. T., Deppert, K., & Samuelson, L. (2009). Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Advanced Materials, 21(2), 153.

    Article  Google Scholar 

  19. Garnett, E., & Yang, P. (2010). Light trapping in silicon nanowire solar cells. Nano Letters, 10, 1082.

    Article  Google Scholar 

  20. Sun, K., Kargar, A., Park, N., Madsen, K. N., Naughton, P. W., Bright, T., et al. (2011). Compound semiconductor nanowire solar cells. IEEE Journal of Selected Topics in Quantum Electronics, 17(4), 1033.

    Article  Google Scholar 

  21. Tang, Y. B., Chen, Z. H., Song, H. S., Lee, C. S., Cong, H. T., Cheng, H. M., et al. (2008). Vertically aligned p-type single crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Letters, 8, 4191.

    Article  Google Scholar 

  22. Colombo, C., Heibeta, M., Gratzel, M., & Fontcuberta i Morral, A. (2009). Gallium arsenide p-i-n radial structures for photovoltaic applications. Applied Physics Letters, 94, 173108.

    Article  Google Scholar 

  23. Goto, H., Nosaki, K., Tomioka, K., Hara, S., Hiruma, K., Motohisa, J., et al. (2009). Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Applied Physics Express, 2, 035004.

    Article  Google Scholar 

  24. Tak, Y., Hong, S. J., Lee, J. S., & Yong, K. (2009). Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. Journal of Materials Chemistry, 19, 5945.

    Article  Google Scholar 

  25. Fan, Z., Razavi, H., Do, J.-W., Moriwaki, A., Ergen, O., Chueh, Y.-L., et al. (2009). Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials, 8, 648.

    Article  Google Scholar 

  26. Kwak, W.-C., Kim, T. G., Lee, W., Han, S.-H., & Sung, Y.-M. (2009). Template-free liquid-phase synthesis of high-density CdS nanowire arrays on conductive glass. Journal of Physical Chemistry C, 113, 1615.

    Article  Google Scholar 

  27. Zhang, Q., Yodyingyong, S., Xi, J., Myers, D., & Cao, G. (2012). Oxide nanowires for solar cell applications. Nanoscale, 4, 1436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gook Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, BG. (2014). Green Energy Devices. In: Kim, D., Jeong, YH. (eds) Nanowire Field Effect Transistors: Principles and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8124-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8124-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8123-2

  • Online ISBN: 978-1-4614-8124-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics