Skip to main content

Filling the Gap in the Relationship Between Cancer and Stem Cells

  • Chapter
  • First Online:
Stem Cells: Current Challenges and New Directions

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Mesenchymal stem cells which are the group of cells that can be isolated from various tissues having the ability of morphing into distinct tissue types and self-renewal have constituted the most popular topic for the stem cell research. Mesenchymal stem cells and cancer cells share common properties like high level of telomerase enzyme activity, deprogramming and proliferation, immortalization, self-renewal, and invasion. As a result of these, common properties have been suggested that some embryonic genes are reexpressing in cancer cells. Additionally, of these properties, MSCs have been shown to have a remarkable tropism towards tumors, so that stem cells might be the key factors of the cancer formation and propagation. There are some studies about the interactions between cancer and stem cells. As a result of these studies, MSCs, with their immunosuppressive activities, vasculogenic supports, anti-apoptotic properties, and being a component of tumor tissue, could affect cancer cells as a promoter, or they could affect tumor formation and propagation as an inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MSC:

Mesenchymal stem cell

B.C.:

Before Christ

hESC:

Human embryonic stem cell

HSC:

Hematopoietic stem cell

BM-MSC:

Bone marrow-derived mesenchymal stem cell

UCB:

Umbilical cord blood

WJ:

Wharton’s jelly

AT:

Adipose tissue

ISCT:

International Society for Cellular Therapy

HLA:

Human leukocyte antigen

GvHD:

Graft-versus-host disease

ALS:

Amyotrophic lateral sclerosis

TNF:

Tumor necrosis factor

NSC:

Neural stem cell

IDO:

Indoleamine 2,3-dioxygenase

PGE2:

Prostaglandin E2

EC:

Endothelial cell

FGF:

Fibroblast growth factor

PDGF:

Platelet-derived growth factor

SDF-1:

Stromal-derived factor-1

CAF:

Carcinoma-associated fibroblast

ECM:

Extracellular matrix

HGF:

Hepatic growth factor

TGF:

Transforming growth factor

hASC:

Human adipose tissue-derived mesenchymal stem cell

hCEC:

Human corneal epithelial cell

STZ:

Streptozotocin

α-SMA:

α-Smooth muscle actin

LPA:

Lysophosphatidic acid

shRNA:

Short hairpin ribonucleic acid

CFU-F:

Colony-forming unit fibroblast

STAT3:

Signal transducer and transcription activator

JAK:

Janus kinase

IL-6:

Interleukin-6

EMT:

Epithelial–mesenchymal transition

EGF:

Epidermal growth factor

DP-MSC:

Dental pulp-derived mesenchymal stem cell

References

  1. Karaoz E, Ovali E (2004) Stem cells. Derya Kitabevi, Trabzon, Turkey

    Google Scholar 

  2. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luriá EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Haematol 2:83–92

    CAS  Google Scholar 

  4. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  PubMed  Google Scholar 

  5. Maximow AA (1906) Über experimentelle Erzeugung von Knochenmarks-Gewebe. Anat Anz 28:24–38

    Google Scholar 

  6. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    CAS  PubMed  Google Scholar 

  7. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336

    CAS  Google Scholar 

  8. Wong RSY (2011) Mesenchymal stem cells: angels or demons. J Biomed Biotechnol 459510, 8 pages

    Google Scholar 

  9. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    CAS  PubMed  Google Scholar 

  10. Barry FP, Murphy JM (2004) Mesenchymal stem cells clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    CAS  PubMed  Google Scholar 

  11. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    CAS  PubMed  Google Scholar 

  12. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337

    PubMed  Google Scholar 

  13. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    CAS  PubMed  Google Scholar 

  14. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50(3):817–827

    PubMed  Google Scholar 

  15. In’t Anker PS, Scherjon SA, Kleijburg-vander KC (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Google Scholar 

  16. In’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852

    Google Scholar 

  17. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Karaoz E, Patir A, Sariboyaci AE, Okcu A, Kokturk S, Gacar G, Demircan PÇ, Kasap M, Seymen F (2008) Characterization and differentiation of dental pulp and PDL stem cells. Continental European Division (CED) of the International Association for Dental Research (IADR) for 4th meeting of the Pan European Federation in London, England. p 228

    Google Scholar 

  19. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular Therapy (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395

    CAS  PubMed  Google Scholar 

  20. Kassem M, Kristiansen M, Abdallah BM (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95:209–214

    CAS  PubMed  Google Scholar 

  21. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97(23):12846–12851, Erratum in: Proc Natl Acad Sci USA 2001; 98(2):777

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10):1205–1220

    CAS  PubMed  Google Scholar 

  23. Guo Z, Li H, Li X, Yu X, Wang H, Tang P, Mao N (2006) In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells 24:992–1000

    PubMed  Google Scholar 

  24. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    CAS  PubMed  Google Scholar 

  25. Comoli P, Ginevri F, Maccario R, Avanzini MA, Marconi M, Groff A, Cometa A, Cioni M, Porretti L, Barberi W, Frassoni F, Locatelli F (2008) Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 23:1196–1202

    CAS  PubMed  Google Scholar 

  26. Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-γ. Stem Cells 24:2466–2477

    CAS  PubMed  Google Scholar 

  27. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognatepeptide. Blood 101:3722–3729

    CAS  PubMed  Google Scholar 

  28. Noel D, Djouad F, Bouffı C, Mrugala D, Jorgensen C (2007) Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma 48:1283–1289

    CAS  PubMed  Google Scholar 

  29. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  Google Scholar 

  30. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    CAS  PubMed  Google Scholar 

  31. Rasmusson I (2006) Immun modulation by mesenchymal stem cells. Exp Cell Res 312:2169–2179

    CAS  PubMed  Google Scholar 

  32. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    CAS  PubMed  Google Scholar 

  33. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D, Fouillard L (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237

    CAS  PubMed  Google Scholar 

  34. Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesencymal stem cells inhibit the formation of cytotoxic T lypmhocytes, but not activated T lymphocytes or natural killer cells. Transplantation 76:1208–1213

    PubMed  Google Scholar 

  35. Batten P, Sarathchandra P, Antoniw JW, Tay SS, Lowdell MW, Taylor PM, Yacoub MH (2006) Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng 12:2263–2273

    CAS  PubMed  Google Scholar 

  36. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    CAS  PubMed  Google Scholar 

  37. Klyushnenkova E, Mosca JD, Zernetkiva V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance and suppression. J Biomed Sci 12:47–57

    CAS  PubMed  Google Scholar 

  38. Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V (2008) In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. J Cell Physiol 214:588–594

    CAS  PubMed  Google Scholar 

  39. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

    CAS  PubMed  Google Scholar 

  40. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  41. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    CAS  PubMed  Google Scholar 

  42. Deans RJ, Moseley AB (2000) Mesencymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    CAS  PubMed  Google Scholar 

  43. De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK (2003) Differential expression of stem cell mobilization-associated molecules on multilineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270

    PubMed  Google Scholar 

  44. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    PubMed  Google Scholar 

  45. Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, Guiducci S, Jones S, Jorgensen C, Le Blanc K, Luyten F, McGonagle D, Martin I, Bocelli-Tyndall C, Pennesi G, Pistoia V, Pitzalis C, Uccelli A, Wulffraat N, Feldmann M (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther 9:301

    PubMed Central  PubMed  Google Scholar 

  46. Lee ST, Jang JH, Cheong JW, Kim JS, Maemg HY, Hahn JS, Ko YW, Min YH (2002) Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 118:1128–1131

    PubMed  Google Scholar 

  47. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, Locatelli F, Fibbe WE (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110:2764–2767

    CAS  PubMed  Google Scholar 

  48. Fang B, Song Y, Lin Q, Zhang Y, Cao Y, Zhao RC, Ma Y (2007) Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transplant 11:814–817

    CAS  PubMed  Google Scholar 

  49. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noël D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844

    CAS  PubMed  Google Scholar 

  50. Linju Yen B, Yen M-L (2008) Mesenchymal stem cells and cancer for better or for worse. J Cancer Mol 4(1):5–9

    Google Scholar 

  51. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184(10):5885–5894

    CAS  PubMed  Google Scholar 

  52. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    CAS  PubMed  Google Scholar 

  53. Tasso R, Augello A, Carida’ M, Postiglione F, Tibiletti MG, Bernasconi B, Astigiano S, Fais F, Truini M, Cancedda R, Pennesi G (2009) Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis 30(1):150–157

    CAS  PubMed  Google Scholar 

  54. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610

    CAS  PubMed  Google Scholar 

  55. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386

    CAS  PubMed  Google Scholar 

  56. http://www.clinicatrials.gov

  57. http://www.controlled-trials.com

  58. Li J, Zeng XH, Mo HY, Rolén U, Gao YF, Zhang XS, Chen QY, Zhang L, Zeng MS, Li MZ, Huang WL, Wang XN, Zeng YX, Masucci MG (2007) Functional inactivation of EBV-specific T-lymphocytes in nasopharyngeal carcinoma: implications for tumor immunotherapy. PLoS One 2:e1122

    PubMed Central  PubMed  Google Scholar 

  59. Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, Banchereau J, Ueno H (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA 104:20884–20889

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Sawaya R, Lang FF, Heimberger AB (2010) Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 16(2):461–473

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    CAS  PubMed  Google Scholar 

  62. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    CAS  PubMed  Google Scholar 

  63. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    CAS  PubMed  Google Scholar 

  64. Crawford Y, Ferrara N (2009) Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends Pharmacol Sci 30(12):624–630

    CAS  PubMed  Google Scholar 

  65. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80(3):267–274

    CAS  PubMed  Google Scholar 

  66. Roorda BD, ter Elst A, Kamps WA, de Bont ES (2009) Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol Hematol 69(3):187–198

    PubMed  Google Scholar 

  67. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94(5):678–685

    CAS  PubMed  Google Scholar 

  68. Annabi B, Naud E, Lee YT, Eliopoulos N, Galipeau J (2004) Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochem 91(6):1146–1158

    CAS  PubMed  Google Scholar 

  69. Galie M, Konstantinidou G, Peroni D, Scambi I, Marchini C, Lisi V, Krampera M, Magnani P, Merigo F, Montani M, Boschi F, Marzola P, Orru R, Farace P, Sbarbati A, Amici A (2008) Mesenchymal stem cells share molecular signature with mesenchymal tumour cells and favour early tumour growth in syngeneic mice. Oncogene 27:2542–2551

    CAS  PubMed  Google Scholar 

  70. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76

    CAS  PubMed  Google Scholar 

  71. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64(23):8492–8495

    CAS  PubMed  Google Scholar 

  72. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007) Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21(2):304–310

    CAS  PubMed  Google Scholar 

  73. Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J (2003) Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 10(8):621–629

    CAS  PubMed  Google Scholar 

  74. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes. Haematologica 94(2):258–263

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F (2009) Mesenchymal stem cell transition to tumour-associated fibroblasts contributes to fibrovascular network expansion and tumour progression. PLoS One 4:e4992

    PubMed Central  PubMed  Google Scholar 

  77. Worthley DL, Ruszkiewicz A, Davies R, Moore S, Nivison-Smith I, Bik To L, Browett P, Western R, Durrant S, So J, Young GP, Mullighan CG, Bardy PG, Michael MZ (2009) Human gastrointestinal neoplasia-associated myofibroblasts can develop from bone marrow-derived cells following allogeneic stem cell transplantation. Stem Cells 27(6):1463–1468

    CAS  PubMed  Google Scholar 

  78. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558

    CAS  PubMed Central  PubMed  Google Scholar 

  79. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    PubMed  Google Scholar 

  80. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J (2009) Bone marrow multipotent mesenchymal stromal cells act as pericyte-like migratory vesicles in experimental gliomas. Mol Ther 17:183–190

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Jeon ES, Lee IH, Heo SC, Shin SH, Choi YJ, Park JH, Park do Y, Kim JH (2010) Mesenchymal stem cells stimulate angiogenesis in a murine xenograft model of A549 human adenocarcinoma through an LPA1 receptor-dependent mechanism. Biochim Biophys Acta 1801(11):1205–1213

    CAS  PubMed  Google Scholar 

  82. Udagawa T, Puder M, Wood M, Schaefer BC, D’Amato RJ (2006) Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. FASEB J 20(1):95–102

    CAS  PubMed  Google Scholar 

  83. Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30(4):589–597

    CAS  PubMed  Google Scholar 

  84. Lin G, Yang R, Banie L, Wang G, Ning H, Li LC, Lue TF, Lin CS (2010) Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 70(10):1066–1073

    PubMed Central  PubMed  Google Scholar 

  85. Prantl L, Muehlberg F, Navone NM, Song YH, Vykoukal J, Logothetis CJ, Alt EU (2010) Adipose tissue-derived stem cells promote prostate tumor growth. Prostate 70(15):1709–15

    CAS  PubMed  Google Scholar 

  86. Xu YX, Chen L, Wang R, Hou WK, Lin P, Sun L, Sun Y, Dong QY (2008) Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses 71:390–393

    CAS  PubMed  Google Scholar 

  87. Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion Rde N, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH (2010) Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 260:75–82

    CAS  PubMed  Google Scholar 

  88. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669

    CAS  PubMed  Google Scholar 

  89. Oh JY, Kim MK, Shin MS, Wee WR, Lee JH (2009) Cytokine secretion by human mesenchymal stem cells cocultured with damaged corneal epithelial cells. Cytokine 46:100–103

    CAS  PubMed  Google Scholar 

  90. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noël D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032

    CAS  PubMed  Google Scholar 

  91. Xu G, Zhang Y, Zhang L, Ren G, Shi Y (2007) The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun 361:745–750

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Karaoz E, Genç ZS, Demircan PC, Aksoy A, Duruksu G (2010) Protection of rat pancreatic islet function and viability by coculture with rat bone-marrow derived mesenchymal stem cells. Cell Death Dis 1(4):e36

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60(5):1254–1260

    CAS  PubMed  Google Scholar 

  94. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264(1):169–184

    CAS  PubMed  Google Scholar 

  96. Sieweke MH, Thompson NL, Sporn MB, Bissell MJ (1990) Mediation of wound-related Rous sarcoma virus tumorigenesis by TGFbeta. Science 248(4963):1656–1660

    CAS  PubMed  Google Scholar 

  97. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851

    CAS  PubMed  Google Scholar 

  98. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011

    CAS  PubMed  Google Scholar 

  99. Tlsty TD (2001) Stromal cells can contribute oncogenic signals. Semin Cancer Biol 11(2):97–104

    CAS  PubMed  Google Scholar 

  100. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    CAS  PubMed  Google Scholar 

  101. Umiel T, Friedman S, Zaizov R, Cohen IJ, Gozes Y, Epstein N, Kobiler D, Zipori D (1986) Long-term culture of infant leukemia cells: dependence upon stromal cells from the bone marrow and bilineage differentiation. Leuk Res 10(8):1007–1013

    CAS  PubMed  Google Scholar 

  102. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117(4):1049–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Vianello F, Villanova F, Tisato V, Lymperi S, Ho KK, Gomes AR, Marin D, Bonnet D, Apperley J, Lam EW, Dazzi F (2010) Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95(7):1081–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283

    CAS  PubMed  Google Scholar 

  105. De Wever O, Demetter P, Mareel M, Bracke M (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238

    PubMed  Google Scholar 

  106. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    CAS  PubMed  Google Scholar 

  107. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    PubMed  Google Scholar 

  108. Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G (1988) Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41:707–712

    CAS  PubMed  Google Scholar 

  109. Ganss R (2006) Tumor stroma fosters neovascularization by recruitment of progenitor cells into the tumor bed. J Cell Mol Med 10:857–865

    CAS  PubMed  Google Scholar 

  110. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    CAS  PubMed  Google Scholar 

  111. Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ (2012) Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 38(3):218–225

    CAS  PubMed  Google Scholar 

  112. Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101:805–815

    CAS  PubMed  Google Scholar 

  113. Heo SC, Lee KO, Shin SH, Kwon YW, Kim YM, Lee CH, Kim YD, Lee MK, Yoon MS, Kim JH (2011) Periostin mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth in a xenograft lung adenocarcinoma model. Biochim Biophys Acta 1813(12):2061–2070

    CAS  PubMed  Google Scholar 

  114. Aoki J (2004) Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15:477–489

    CAS  PubMed  Google Scholar 

  115. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3:582–591

    CAS  PubMed  Google Scholar 

  116. Gaits F, Fourcade O, Le Balle F, Gueguen G, Gaige B, Gassama-Diagne A, Fauvel J, Salles JP, Mauco G, Simon MF, Chap H (1997) Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett 410:54–58

    CAS  PubMed  Google Scholar 

  117. Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, Kim JH (2008) Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 26:789–797

    CAS  PubMed  Google Scholar 

  118. Lee MJ, Jeon ES, Lee JS, Cho M, Suh DS, Chang CL, Kim JH (2008) Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem 104:499–510

    CAS  PubMed  Google Scholar 

  119. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249

    CAS  PubMed  Google Scholar 

  120. Kudo Y, Siriwardena BS, Hatano H, Ogawa I, Takata T (2007) Periostin: novel diagnostic and therapeutic target for cancer. Histol Histopathol 22:1167–1174

    CAS  PubMed  Google Scholar 

  121. Takanami I, Abiko T, Koizumi S (2008) Expression of periostin in patients with nonsmall cell lung cancer: correlation with angiogenesis and lymphangiogenesis. Int J Biol Markers 23:182–186

    CAS  PubMed  Google Scholar 

  122. Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W, Moch H, Kristiansen G (2008) Prognostic significance of epithelial–mesenchymal and mesenchymal–epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res 14:7430–7437

    CAS  PubMed  Google Scholar 

  123. Hong L, Sun H, Lv X, Yang D, Zhang J, Shi Y (2010) Expression of periostin in the serum of NSCLC and its function on proliferation and migration of human lung adenocarcinoma cell line (A549) in vitro. Mol Biol Rep 37:2285–2293

    CAS  PubMed  Google Scholar 

  124. Choi KU, Yun JS, Lee IH, Heo SC, Shin SH, Jeon ES, Choi YJ, Suh DS, Yoon MS, Kim JH (2011) Lysophosphatidic acid-induced expression of periostin in stromal cells: prognostic relevance of periostin expression in epithelial ovarian cancer. Int J Cancer 128:332–342

    CAS  PubMed  Google Scholar 

  125. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, Guillaudeux T, Lamy T, Fest T, Tarte K (2007) Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109:693–702

    CAS  PubMed  Google Scholar 

  126. Johnson C, Han Y, Hughart N, McCarra J, Alpini G, Meng F (2012) Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest Cancer 1(1):58–70

    PubMed Central  PubMed  Google Scholar 

  127. Saglam O, Unal ZS, Subası C, Karaoz E (2013) STAT3 mediated tumorigenesis effect of IL-6 in malign breast tissue stromal cells. Unpublished manuscript

    Google Scholar 

  128. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101:293–299

    CAS  PubMed  Google Scholar 

  129. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O’Brien T, Kerin MJ (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 123:317–326

    Google Scholar 

  130. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70:6945–6956

    CAS  PubMed  Google Scholar 

  131. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, Ho AD, Giese N, Büchler MW, Friess H, Büchler P, Herr I (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99:622–631

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stromal and targeted delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    CAS  PubMed  Google Scholar 

  133. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M (2003) Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 75(248):255

    Google Scholar 

  134. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18:500–507

    CAS  PubMed  Google Scholar 

  135. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269:67–77

    CAS  PubMed  Google Scholar 

  136. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C, Zhao RC (2009) Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23:925–933

    CAS  PubMed  Google Scholar 

  137. Cousin B, Ravet E, Poglio S, De Toni F, Bertuzzi M, Lulka H, Touil I, André M, Grolleau JL, Péron JM, Chavoin JP, Bourin P, Pénicaud L, Casteilla L, Buscail L, Cordelier P (2009) Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4:e6278

    PubMed Central  PubMed  Google Scholar 

  138. Akpinar B, Gacar G, Duruksu G, Karaoz E (2013) Study of cytotoxic effects by stem cell derived from human dental pulp on K562 (Human Myelogeneous Leukamia) cell line. Unpublished manuscript

    Google Scholar 

  139. Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26(6):1387–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Zhou YF, Bosch-Marce M, Okuyama H, Krishnamachary B, Kimura H, Zhang L, Huso DL, Semenza GL (2006) Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res 66:10849–10854

    CAS  PubMed  Google Scholar 

  141. Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B, Fisk N, Stamp G, Bonnet D, Janes SM (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25:1586–1594

    PubMed  Google Scholar 

  142. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379

    CAS  PubMed  Google Scholar 

  143. Rubio D, Garcia-Castro J, Martín MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    CAS  PubMed  Google Scholar 

  144. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103

    PubMed  Google Scholar 

  145. Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schrøder HD, Kassem M (2005) Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 65:3126–3135

    CAS  PubMed  Google Scholar 

  146. Zimmermann S, Glaser S, Ketteler R, Waller CF, Klingmüller U, Martens UM (2004) Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells 22:741–749

    CAS  PubMed  Google Scholar 

  147. Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, Jia HL, Shi J, Wu JC, Dai C, Dong QZ, Qin LX (2010) Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 101(12):2546–2553

    CAS  PubMed  Google Scholar 

  148. Li L, Tian H, Chen Z, Yue W, Li S, Li W (2011) Inhibition of lung cancer cell proliferation mediated by human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43(2):143–148

    CAS  Google Scholar 

  149. Sun B, Yu KR, Bhandari DR, Jung JW, Kang SK, Kang KS (2010) Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Lett 296(2):178–185

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Duygu Irmak for help in proofreading the manuscript. We wish to acknowledge Nurcan Erarslen for creating the artwork in Fig. 11.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karaoz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karaoz, E., Akpinar, B. (2013). Filling the Gap in the Relationship Between Cancer and Stem Cells. In: Turksen, K. (eds) Stem Cells: Current Challenges and New Directions. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8066-2_11

Download citation

Publish with us

Policies and ethics