Skip to main content

Multiscale Equation-Based Models: Insights for Inflammation and Physiological Variability

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

The inflammatory response initiates the healing and recovery from injury. When successful, this leads to the restoration of homeostasis; however, if homeostasis cannot be restored, elevated levels of inflammatory activity may exert a deleterious effect. Given the complexity inherent in the redundant and interacting components of the inflammatory response, the development of novel therapies aimed at modulating the inflammatory response has been slow. In this chapter, we discuss our work on modeling human endotoxemia while focusing on how physiologic variability plays a role in the inflammatory response and how rhythmic biological signals may be applied in a translational context. Physiologic variability, ranging in scale from oscillations in autonomic activity less than 1 Hz which are reflected in short-term heart rate variability (HRV) to circadian rhythms in cytokine and hormone activities, is generally disrupted in inflammation. Based on this, the opportunity exists to study biological rhythms to gain insight into underlying physiological mechanisms and identify clinically relevant information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angus DC, Linde-Zwirble WT et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303–1310

    Article  PubMed  CAS  Google Scholar 

  2. Angus DC (2011) The search for effective therapy for sepsis: back to the drawing board? JAMA 306(23):2614–2615

    Article  PubMed  CAS  Google Scholar 

  3. Namas R, Zamora R et al (2011) Sepsis: something old, something new, and a systems view. J Crit Care 27(3):314.e1–314.e11

    Article  Google Scholar 

  4. Seely AJ, Christou NV (2000) Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med 28(7):2193–2200

    Article  PubMed  CAS  Google Scholar 

  5. Sontag ED (2004) Some new directions in control theory inspired by systems biology. Syst Biol (Stevenage) 1(1):9–18

    Article  CAS  Google Scholar 

  6. Rajasethupathy P, Vayttaden SJ et al (2005) Systems modeling: a pathway to drug discovery. Curr Opin Chem Biol 9(4):400–406

    Article  PubMed  CAS  Google Scholar 

  7. Vodovotz Y, Csete M et al (2008) Translational systems biology of inflammation. PLoS Comput Biol 4(4):e1000014

    Article  PubMed  Google Scholar 

  8. Foteinou PT, Calvano SE et al (2009) In silico simulation of corticosteroids effect on an NFkB-dependent physicochemical model of systemic inflammation. PLoS One 4(3):e4706

    Article  PubMed  Google Scholar 

  9. Foteinou PT, Calvano SE et al (2009) Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci 217(1):27–42

    Article  PubMed  CAS  Google Scholar 

  10. Foteinou PT, Calvano SE et al (2009) Translational potential of systems-based models of inflammation. Clin Transl Sci 2(1):85–89

    Article  PubMed  CAS  Google Scholar 

  11. Ahmad S, Ramsay T et al (2009) Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One 4(8):e6642

    Article  PubMed  Google Scholar 

  12. Moorman JR, Carlo WA et al (2011) Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr 159(6):900.e1–906.e1

    Google Scholar 

  13. Yehuda R, Teicher MH et al (1996) Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol Psychiatry 40(2):79–88

    Article  PubMed  CAS  Google Scholar 

  14. Rosmond R, Dallman MF et al (1998) Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 83(6):1853–1859

    Article  PubMed  CAS  Google Scholar 

  15. Polk DE, Cohen S et al (2005) State and trait affect as predictors of salivary cortisol in healthy adults. Psychoneuroendocrinology 30(3):261–272

    Article  PubMed  CAS  Google Scholar 

  16. Mormont MC, Levi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70(2):241–247

    Article  PubMed  CAS  Google Scholar 

  17. Sephton SE, Sapolsky RM et al (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92(12):994–1000

    Article  PubMed  CAS  Google Scholar 

  18. Hrushesky WJ, Langevin T et al (1994) Circadian dynamics of tumor necrosis factor alpha (cachectin) lethality. J Exp Med 180(3):1059–1065

    Article  PubMed  CAS  Google Scholar 

  19. Hrushesky WJ, Wood PA (1997) Circadian time structure of septic shock: timing is everything. J Infect Dis 175(5):1283–1284

    PubMed  CAS  Google Scholar 

  20. Lowry SF (2005) Human endotoxemia: a model for mechanistic insight and therapeutic targeting. Shock 24(Suppl 1):94–100

    Article  PubMed  Google Scholar 

  21. Lowry SF (2009) The stressed host response to infection: the disruptive signals and rhythms of systemic inflammation. Surg Clin North Am 89(2):311–326, vii

    Article  PubMed  Google Scholar 

  22. Andreasen AS, Krabbe KS et al (2008) Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15(17):1697–1705

    Article  PubMed  CAS  Google Scholar 

  23. Buttenschoen K, Kornmann M et al (2008) Endotoxemia and endotoxin tolerance in patients with ARDS. Langenbecks Arch Surg 393(4):473–478

    Article  PubMed  Google Scholar 

  24. Shanker B-A, Coyle SM et al (2012) Modeling the human injury response. J Am Coll Surg 211(3, Supplement 1):S53–S54

    Article  Google Scholar 

  25. Haimovich B, Calvano J et al (2010) In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med 38(3):751–758

    Article  PubMed  CAS  Google Scholar 

  26. Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24(7):1107–1116

    Article  PubMed  CAS  Google Scholar 

  27. Godin PJ, Fleisher LA et al (1996) Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med 24(7):1117–1124

    Article  PubMed  CAS  Google Scholar 

  28. Rassias AJ, Holzberger PT et al (2005) Decreased physiologic variability as a generalized response to human endotoxemia. Crit Care Med 33(3):512–519

    Article  PubMed  Google Scholar 

  29. Alvarez SM, Katsamanis Karavidas M et al (2007) Low-dose steroid alters in vivo endotoxin-induced systemic inflammation but does not influence autonomic dysfunction. J Endotoxin Res 13(6):358–368

    Article  PubMed  CAS  Google Scholar 

  30. Sayk F, Vietheer A et al (2008) Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Regul Integr Comp Physiol 295(3): R891–R898

    Article  PubMed  CAS  Google Scholar 

  31. Jan BU, Coyle SM et al (2010) Relationship of basal heart rate variability to in vivo cytokine responses after endotoxin exposure. Shock 33(4):363–368

    Article  PubMed  CAS  Google Scholar 

  32. Kox M, Ramakers BP et al (2011) Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers. Shock 36(2):115–120

    Article  PubMed  Google Scholar 

  33. Rassias AJ, Guyre PM et al (2011) Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge. J Crit Care 26(6):636.e1–636.e5

    Article  CAS  Google Scholar 

  34. Gholami M, Mazaheri P et al (2012) Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control in rats. Shock 37(2):219–227

    Article  PubMed  Google Scholar 

  35. Akselrod S, Gordon D et al (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220–222

    Article  PubMed  CAS  Google Scholar 

  36. Garrard CS, Kontoyannis DA et al (1993) Spectral analysis of heart rate variability in the sepsis syndrome. Clin Auton Res 3(1):5–13

    Article  PubMed  CAS  Google Scholar 

  37. Piepoli M, Garrard CS et al (1995) Autonomic control of the heart and peripheral vessels in human septic shock. Intensive Care Med 21(2):112–119

    Article  PubMed  CAS  Google Scholar 

  38. Annane D, Trabold F et al (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 160(2):458–465

    Article  PubMed  CAS  Google Scholar 

  39. Korach M, Sharshar T et al (2001) Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med 29(7):1380–1385

    Article  PubMed  CAS  Google Scholar 

  40. Barnaby D, Ferrick K et al (2002) Heart rate variability in emergency department patients with sepsis. Acad Emerg Med 9(7):661–670

    Article  PubMed  Google Scholar 

  41. Tateishi Y, Oda S et al (2007) Depressed heart rate variability is associated with high IL-6 blood level and decline in the blood pressure in septic patients. Shock 28(5):549–553

    Article  PubMed  CAS  Google Scholar 

  42. Pincus SM (1994) Greater signal regularity may indicate increased system isolation. Math Biosci 122(2):161–181

    Article  PubMed  CAS  Google Scholar 

  43. Lowry SF, Calvano SE (2008) Challenges for modeling and interpreting the complex biology of severe injury and inflammation. J Leukoc Biol 83(3):553–557

    Article  PubMed  CAS  Google Scholar 

  44. Lu YC, Yeh WC et al (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151

    Article  PubMed  CAS  Google Scholar 

  45. Calvano SE, Xiao W et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437(7061):1032–1037

    Article  PubMed  CAS  Google Scholar 

  46. Yang EH, Almon RR et al (2009) Identification of global transcriptional dynamics. PLoS One 4(7):e5992

    Article  PubMed  Google Scholar 

  47. Yang E, Maguire T et al (2007) Bioinformatics analysis of the early inflammatory response in a rat thermal injury model. BMC Bioinformatics 8:10

    Article  PubMed  Google Scholar 

  48. Hoyle DC, Rattray M et al (2002) Making sense of microarray data distributions. Bioinformatics 18(4):576–584

    Article  PubMed  CAS  Google Scholar 

  49. Dayneka NL, Garg V et al (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    Article  PubMed  CAS  Google Scholar 

  50. Foteinou PT, Calvano SE et al (2010) Multiscale model for the assessment of autonomic dysfunction in human endotoxemia. Physiol Genomics 42(1):5–19

    Article  PubMed  CAS  Google Scholar 

  51. Ramakrishnan R, DuBois DC et al (2002) Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 29(1):1–24

    Article  PubMed  CAS  Google Scholar 

  52. Scheff JD, Calvano SE et al (2010) Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 264(3):1068–1076

    Article  PubMed  Google Scholar 

  53. Coogan AN, Wyse CA (2008) Neuroimmunology of the circadian clock. Brain Res 1232:104–112

    Article  PubMed  CAS  Google Scholar 

  54. Zabel P, Horst HJ et al (1990) Circadian rhythm of interleukin-1 production of monocytes and the influence of endogenous and exogenous glucocorticoids in man. Klin Wochenschr 68(24):1217–1221

    Article  PubMed  CAS  Google Scholar 

  55. Petrovsky N, Harrison LC (1997) Diurnal rhythmicity of human cytokine production – a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J Immunol 158(11):5163–5168

    PubMed  CAS  Google Scholar 

  56. Petrovsky N, Harrison LC (1998) The chronobiology of human cytokine production. Int Rev Immunol 16(5–6):635–649

    Article  PubMed  CAS  Google Scholar 

  57. Petrovsky N, McNair P et al (1998) Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine 10(4):307–312

    Article  PubMed  CAS  Google Scholar 

  58. Hermann C, von Aulock S et al (2006) Endogenous cortisol determines the circadian rhythm of lipopolysaccharide- but not lipoteichoic acid-inducible cytokine release. Eur J Immunol 36(2):371–379

    Article  PubMed  CAS  Google Scholar 

  59. del Gobbo V, Libri V et al (1989) Pinealectomy inhibits interleukin-2 production and natural killer activity in mice. Int J Immunopharmacol 11(5):567–573

    Article  PubMed  Google Scholar 

  60. Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr Top Med Chem 2(2):167–179

    Article  PubMed  CAS  Google Scholar 

  61. Skwarlo-Sonta K, Majewski P et al (2003) Bidirectional communication between the pineal gland and the immune system. Can J Physiol Pharmacol 81(4):342–349

    Article  PubMed  CAS  Google Scholar 

  62. Scheff JD, Calvano SE et al (2012) Transcriptional implications of ultradian glucocorticoid secretion in homeostasis and in the acute stress response. Physiol Genomics 44(2):121–129

    Article  PubMed  CAS  Google Scholar 

  63. Rankin J, Walker JJ et al (2012) Characterizing dynamic interactions between ultradian glucocorticoid rhythmicity and acute stress using the phase response curve. PLoS One 7(2):e30978

    Article  PubMed  CAS  Google Scholar 

  64. Stavreva DA, Wiench M et al (2009) Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol 11(9):1093–1102

    Article  PubMed  CAS  Google Scholar 

  65. McMaster A, Jangani M et al (2011) Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS One 6(1):e15766

    Article  PubMed  CAS  Google Scholar 

  66. Lightman SL, Conway-Campbell BL (2010) The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci 11(10):710–718

    Article  PubMed  CAS  Google Scholar 

  67. Jan BU, Coyle SM et al (2009) Influence of acute epinephrine infusion on endotoxin-induced parameters of heart rate variability: a randomized controlled trial. Ann Surg 249(5):750–756

    Article  PubMed  Google Scholar 

  68. Scheff JD, Mavroudis PD et al (2011) Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia. Physiol Genomics 43(16):951–964

    Article  PubMed  CAS  Google Scholar 

  69. (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

    Google Scholar 

  70. Berntson GG, Bigger JT Jr et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6):623–648

    Article  PubMed  CAS  Google Scholar 

  71. Massin MM, Maeyns K et al (2000) Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 83(2):179–182

    Article  PubMed  CAS  Google Scholar 

  72. Foteinou PT, Calvano SE et al (2011) A physiological model for autonomic heart rate regulation in human endotoxemia. Shock 35(3):229–239

    Article  PubMed  Google Scholar 

  73. Chiu HW, Kao T (2001) A mathematical model for autonomic control of heart rate variation. IEEE Eng Med Biol Mag 20(2):69–76

    Article  PubMed  CAS  Google Scholar 

  74. Brennan M, Palaniswami M et al (2002) Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283(5): H1873–H1886

    PubMed  CAS  Google Scholar 

  75. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96(9): 3224–3232

    Article  PubMed  CAS  Google Scholar 

  76. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19(6):493–499

    Article  PubMed  CAS  Google Scholar 

  77. Fairchild KD, Srinivasan V et al (2011) Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Regul Integr Comp Physiol 300(2): R330–R339

    Article  PubMed  CAS  Google Scholar 

  78. Takayama K, Yuhki K et al (2005) Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med 11(5):562–566

    Article  PubMed  CAS  Google Scholar 

  79. Schmidt H, Saworski J et al (2007) Decreased beating rate variability of spontaneously contracting cardiomyocytes after co-incubation with endotoxin. J Endotoxin Res 13(6):339–342

    Article  PubMed  CAS  Google Scholar 

  80. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859

    Article  PubMed  CAS  Google Scholar 

  81. Huston JM, Gallowitsch-Puerta M et al (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35(12):2762–2768

    Article  PubMed  Google Scholar 

  82. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    Article  PubMed  CAS  Google Scholar 

  83. Hoffmann A, Levchenko A et al (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298(5596):1241–1245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I.P. Androulakis acknowledges support from NIH GM082974. J.D. Scheff and S.E. Calvano are supported, in part, from NIH GM34695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Androulakis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheff, J.D., Calvano, S.E., Androulakis, I.P. (2013). Multiscale Equation-Based Models: Insights for Inflammation and Physiological Variability. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8008-2_7

Download citation

Publish with us

Policies and ethics