Skip to main content

Sterile Filtration: Principles, Best Practices and New Developments

  • Chapter
  • First Online:
Sterile Product Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 6))

Abstract

This chapter starts with a historical overview, description of sterile filtration applications, and performance requirements. Special attention is paid to the sterilizing final fill application for biotherapeutics with associated regulatory requirements. Sterile filters, their properties, manufacture, retention mechanisms, and economics are described. The chapter then covers how to develop, implement, and validate a sterile filtration process. Methods for filter selection, testing with scaled-down devices, sizing, system design, and operation are included. The use of filter bacterial challenge studies, system sterilization, and integrity testing for validation of the filtration process are covered. The chapter finishes with case studies in several areas the authors felt warranted special consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Accomazzo MA, Grant DC (1986) Mechanisms and devices for filtration of critical process gases. ASTM Special Technical Publication 975, pp 402–460

    Google Scholar 

  • Acucena R, Wilkins R (2012) Best practices for sterile filtration validation of re-use and extended-use processes. Contract Pharma

    Google Scholar 

  • Agallaco J (1990) Steam sterilization-in-place technology. J Parenter Sci Technol 44(5):253–256

    Google Scholar 

  • American Public Health Association (2005) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • ASTM, Standard F838-05 (2003) Standard test method for determining bacterial retention of membrane filters utilized for liquid filtration. ASTM International, West Conshohocken, PA. doi: 10.1520/C0033-03, www.astm.org

  • Badmington F, Wilkins R, Payne M, Honig ES (1995) Vmax testing for practical microfiltration train scale-up in biopharmaceutical processing. Pharm Technol 19:64–76

    CAS  Google Scholar 

  • Baker MN (1949) The quest for pure water. The American Water Works Association, New York, NY

    Google Scholar 

  • Bin T, Kulshreshtha AK, Al-Shakhshir R, Hem SL (1999) Adsorption of benzalkonium chloride by filter membranes: mechanisms and effect of formulation and processing parameters. Pharm Dev Technol 4:151–165

    Article  PubMed  CAS  Google Scholar 

  • Bin T, McCrosky L, Kulshreshtha AK, Hem SL (2000) Adsorption of esters of p-hydroxybenzoic acid by filter membranes: mechanism and effect of formulation and processing parameters. Pharm Dev Technol 5:95–104

    Article  PubMed  CAS  Google Scholar 

  • Blanchard MM (2007) Quantifying sterilizing membrane retention performance. BioProcess Int 5:44–51

    Google Scholar 

  • Bolton G, LaCasse D, Kuriyel R (2006) Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids. J Membr Sci 277:75–84

    Article  CAS  Google Scholar 

  • Brose DJ, Waibel P (1996) Adsorption of proteins to commercial microfiltration capsules. BioPharm 9:36–39

    CAS  Google Scholar 

  • Brown AI, Levison P, Titchener-Hooker NJ, Lye GJ (2009) Membrane pleating effects in 0.2 mm rated microfiltration cartridges. J Membr Sci 341:76–83

    Article  CAS  Google Scholar 

  • Carbrello C, Rogers M (2010) Optimizing vaccine adjuvant filtration. BioPharm Int. Suppl. Vaccine development and manufacturing: pandemics and beyond, pp 21–26

    Google Scholar 

  • Carter J, Levy R (1998) Microbial retention testing in the validation of sterilizing filtration (chapter 18). In: Meltzer TH, Jornitz MW (eds) Filtration in the biopharmaceutical industry. Marcel Dekker, New York, NY

    Google Scholar 

  • Chen J, Bergevin J, Kiss R, Walker G, Battistoni T, Lufburrow P, Lam H, Vinther A (2012) Case study: a novel bacterial contamination in cell culture production—Leptospira licerasiae. PDA J Pharm Sci Technol 66:580–591

    Article  PubMed  Google Scholar 

  • Christian DA, Meltzer TH (1986) The penetration of membranes by organism grow-through and its related problems. Ultrapure Water 3:30–44

    Google Scholar 

  • Cole S (2006) Steam sterilization of filtration systems: practical considerations for in-line operation. Eur J Parent Pharm Sci 11(1):15–22

    Google Scholar 

  • De Laplace PS (1806) Mechanique celeste, supplement to book 10

    Google Scholar 

  • Einstein A, Muehsam H (1923) Experimental determination of pore size in filters (in Ger). Deutsch Med Wochenschr 49:1012–1013 as cited in [11]

    Google Scholar 

  • EMD Millipore Corporation (2012), Durapore Cartridge Filter Validation Guide, VG001 Rev D 10/2012

    Google Scholar 

  • Emory S (1989a) Principles of integrity testing hydrophilic microporous membranes. Pharm Technol 13(9):68–77

    Google Scholar 

  • Emory S (1989b) Principles of integrity testing hydrophilic microporous membranes, part II. Pharm Technol 13(10):36–46

    CAS  Google Scholar 

  • Enzinger LA (1892) US Patent 605,706

    Google Scholar 

  • European Commission, EudraLex (2008) The rules governing medicinal products in the European Union, vol 4, EU guidelines to good manufacturing practice, medicinal products for human and veterinary use Annex 1 manufacture of sterile medicinal products. Brussels

    Google Scholar 

  • Felo M, Bisschop T, Oulundsen G (2010) Improved method for the simultaneous screening and sizing of depth filters and sterilizing-grade membrane filters for biological stream clarification, Recovery of Biological Products XIV, Lake Tahoe, CA

    Google Scholar 

  • Folmsbee M, Moussourakis M (2012) Sterilizing filtration of liposomes and related lipid-containing solutions: enhancing successful filter qualification. PDA J Pharm Sci Technol 66:161–167

    Article  PubMed  CAS  Google Scholar 

  • Giglia S, Straeffer G (2012) Combined mechanism fouling model and method for optimization of series microfiltration membrane performance. J Membr Sci 417:144–153

    Article  Google Scholar 

  • Giglia S, Yavorsky D (2007) Scaling from discs to pleated devices. PDA J Pharm Sci Technol 61:314–323

    PubMed  CAS  Google Scholar 

  • Goel V, Accomozzo MA, DiLeo AJ, Meier P, Pitt A, Pluskal M, Kaiser R (1992) Deadend microfiltration: applications, design, and costs (Ch. 34). In: Ho WSW, Sircar KK (eds) Membrane handbook. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  • Grant DC, Liu BYH, Fisher WG, Bowling RA (1988). Particle capture mechanisms in gases and liquids: an analysis of operative mechanisms. In: I.E.S. Proceedings, pp 464–473

    Google Scholar 

  • Guilfoyle DE, Roose R, Carito SL (1990) An evaluation of preservative adsorption onto nylon membrane filters. J Parenter Sci Technol 44:314

    PubMed  CAS  Google Scholar 

  • International Conference on Harmonization (2011) Impurities: guidelines for residual solvents, Q3C(R5)

    Google Scholar 

  • Hermia J (1982) Constant pressure blocking filtration laws- application to power-law non-Newtonian fluids. Trans IChemE 60:183

    CAS  Google Scholar 

  • Ho C-C, Zydney A (2000) A combined pore blockage and cake filtration model for protein fouling during microfiltration. J Colloid Interface Sci 232:389–399

    Article  PubMed  CAS  Google Scholar 

  • Kakemi K, Sezaki H, Arakawa E, Kimura K, Ikeda K (1971) Interaction of parabens and other pharmaceutical adjuvants with plastic containers. Chem Pharm Bull 19:2523–2529

    Article  CAS  Google Scholar 

  • Kaushal S, Gervais B, Lute S, Eroraha A, Faustino P, Brorson K, Hussong D (2013) Evidence for grow-through penetration of 0.2-μm-pore-size filters by Serratia marcescens and Brevundimonas diminuta. J Ind Microbiol Biotechnol 40(3–4):327–334

    Article  PubMed  CAS  Google Scholar 

  • Koch HL (1984) Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol 159:919–924

    PubMed  CAS  Google Scholar 

  • Leahy TJ (1983) Validation of bacterial retention by membrane filtration: a proposed approach for determining sterility assurance, PhD Thesis, Univ. Massachusetts, Plant and Soil Sciences Dept., Amherst, MA

    Google Scholar 

  • Leahy TJ, Gabler FR (1984) Sterile filtration of gases by membrane filters. Biotechnol Bioeng 26:836–843

    Article  PubMed  CAS  Google Scholar 

  • Leahy TJ, Sullivan MJ (1978) Validation of bacterial retention capabilities of membrane filters. Pharm Technol 2:65

    Google Scholar 

  • Lebleu N, Roques C, Aimar P, Causserand C (2009) Role of the cell-wall structure in the retention of bacteria by microfiltration membranes. J Membr Sci 326:178–185

    Article  CAS  Google Scholar 

  • Levy RV (1987) The effects of pH, viscosity and additives on the bacterial retention of membrane filters challenged with pseudomonas diminuta, Fluid Filtration: Liquid, Volume II, ASTM Special Technical Publication 975, pp 80–89

    Google Scholar 

  • Levy RV (1987) The mechanisms and reliability of sterilizing filtration with microporous membranes. In: Pharm Tech Conference Proceedings

    Google Scholar 

  • Levy RV (1998) Microbial retention testing of sterilizing-grade filters with final parenteral products. Presentation to the PDA annual meeting, Bethesda, MD

    Google Scholar 

  • Lutz H (2009) Rationally defined safety factors for filter sizing. J Membr Sci 341:268–278

    Article  CAS  Google Scholar 

  • Mahler H-C, Huber F, Kishore RSK, Reindl J, Ruckert P, Muller R (2010) Adsorption behavior of a surfactant and a monoclonal antibody to sterilizing-grade filters. J Pharm Sci 99:2620–2627

    PubMed  CAS  Google Scholar 

  • Meltzer TH (1989a) Filtration: a critical review of filter integrity testing: part I. the bubble point method, assessing filter compatibility, initial and final testing. Ultrapure Water 4:40–51

    Google Scholar 

  • Meltzer TH (1989b) Filtration: a critical review of filter integrity testing: part II. The diffusive air flow and pressure-hold methods, assessing filter compatibility, initial and final testing. Ultrapure Water 5:44–56

    Google Scholar 

  • Mok Y, Besnard L, Pattnaik P, Raghunath B (2012) Sterilizing-grade filter sizing based on permeability. BioProcess Int 10:58–63

    CAS  Google Scholar 

  • Nobuo H, Susumu O, Katsuyoshi F (1992) Adsorption of drugs from ophthalmic solutions onto membrane filters during filtration sterilization. Chem Abstr 116:201–267

    Google Scholar 

  • Onraedt A, Folmsbee M, Kumar A, Martin J (2010) Sterilizing filtration of adjuvanted vaccines: ensuring successful filter qualification. BioPharm Int

    Google Scholar 

  • PDA (1998) Sterilizing filtration of liquids. Technical report no. 26. PDA J Pharm Sci Technol 52(S1)

    Google Scholar 

  • PDA (2008) Sterilizing filtration of liquids. Technical report no. 26 (revised 2008). PDA J Pharm Sci Technol 62(5 suppl TR26):2–60

    Google Scholar 

  • Pitt A (1987) The nonspecific protein binding of polymeric microporous membranes. J Parenter Sci Technol 41(3):110–113

    PubMed  CAS  Google Scholar 

  • Purchas DB, Sutherland K (2002) Handbook of filter media. Elsevier, Oxford

    Google Scholar 

  • Rajniak P, Tsinontides SC, Pham D, Hunke WA, Reynolds SD, Chern RT (2008) Sterilizing filtration—principles and practice for successful scale-up to manufacturing. J Membr Sci 325:223–237

    Article  CAS  Google Scholar 

  • Reti AR, Leahy TJ, Meier PM (1979) The retention mechanisms of sterilizing and other submicron high efficiency filter Structures. In: Second World Filtration Congress, London

    Google Scholar 

  • Robertson JH (1995) Complexities with various validation approaches. PDA Special Forum on Validation of Microbial Retention of Sterilizing Filters, Bethesda, MD

    Google Scholar 

  • Rubow KL (1981) Submicron aerosol filtration characteristics of membrane filters, PhD Thesis, Univ. of Minnesota, Mechanical Engineering Dept., Minneapolis, MN

    Google Scholar 

  • Skidmore K, Hewitt D, Kao Y-H (2012) Quantitation and characterization of process impurities and extractions in protein containing solutions using proton NMR as a general tool. Biotechnol Prog 28:1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Stone TE, Goel V, Leszczak J (1994) Methodology for analysis of filter extractables: a model stream approach. Pharm Technol 18(10):116–130

    CAS  Google Scholar 

  • Stone TE, Goel V, Leszczak J, Chrai S (1996) The model stream approach: defining the worst case conditions. Pharm Technol 20(2):34–51

    Google Scholar 

  • Sykes G (1965) Disinfection and sterilization, 2nd edn. J.B. Lippincott, Philadelphia, PA

    Google Scholar 

  • Thomas CR, Dunnill P (1971) Action of shear on enzymes: studies with catalase and urease. Biotechnol Bioeng 21:2279–2302

    Article  Google Scholar 

  • Tien C (1989) Granular filtration of aerosols and hydrosols. Butterworths, Stoneham, MA

    Google Scholar 

  • Trusky G, Gabler R, DiLeo A, Manter T (1987) The effect of membrane filtration upon protein conformation. J Parenter Sci Technol 41(6):180–193

    Google Scholar 

  • Tyagi AK, Randolph TW, Dong A, Maloney KM, Hitscherich C Jr, Carpenter JF (2009) IgG particle formation during filling operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci 98:94–104

    Article  PubMed  CAS  Google Scholar 

  • US FDA (1990) Guidelines on general principles of process validation. Center for Drugs and Biologicals and Office of Regulatory Affairs, Washington, DC

    Google Scholar 

  • US FDA (1994) Human drug CGMP notes, vol 2(3). Center for Drug Evaluation and Research, Washington, DC

    Google Scholar 

  • US FDA (2004) Guidance for industry sterile drug products produced by aseptic processing- current good manufacturing practice. Washington, DC. www.fda.gov/cder/guidance/5882fnl.htm

  • USP (1990) Containers, physicochemical tests plastics, non-volatile residue, USP XXII (661), p 1572. United States Pharmacopeial Convention, Rockville, MD

    Google Scholar 

  • USP 85 Bacterial endotoxins test. United States Pharmacopeial Convention, Rockville, MD

    Google Scholar 

  • USP Section <788> Particulate matter in injections. United States Pharmacopeial Convention, Rockville, MD

    Google Scholar 

  • USP Section <85> General safety test, and section <88> for biologics safety test and in vivo biological reactivity tests to plastics. United States Pharmacopeial Convention, Rockville, MD

    Google Scholar 

  • Williams RE, Meltzer TH (1983) Membrane structure, the bubble point and particle retention. Pharm Technol 7(5):36–42

    CAS  Google Scholar 

  • Yao YH, Bender J, Hagewiesche A, Wong P, Huang Y, Vanderlaan M (2001) Characterization of filter extractables by proton NMR spectroscopy: studies on intact filters with process buffers. PDA J Pharm Sci Technol 44:268–277

    Google Scholar 

  • Young T (1885). In: Peacock G (ed) Miscellaneous works, An Essay on the Cohesion of Fluids vol 1. J. Murray, London, p 418

    Google Scholar 

  • Zeman LJ, Zydney AL (1996). Microfiltration and ultrafiltration. Marcel Dekker, New York

    Google Scholar 

  • Zhou JX, Qiu J, Jiang G, Zhou C, Bingham N, Yeung H, Dransart B, Wadhwa M-V, Tressel T (2008) Non-specific binding and saturation of Polysorbate-20 with aseptic filter membranes for drug substance and drug product during mAb production. J Membrane Sci 325:735–741

    Article  CAS  Google Scholar 

  • Zsigmondy R, Bachmann W (1922) US Patent 1,421,341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herb Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Lutz, H., Wilkins, R., Carbrello, C. (2013). Sterile Filtration: Principles, Best Practices and New Developments. In: Kolhe, P., Shah, M., Rathore, N. (eds) Sterile Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7978-9_16

Download citation

Publish with us

Policies and ethics