Skip to main content

Pathophysiology of Mood Disorders and Mechanisms of Action of Antidepressants and Mood Stabilizers

  • Chapter
  • First Online:
Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders

Abstract

The present chapter summarizes information on the pathophysiology of mood disorders and mechanisms of action of antidepressants and mood stabilizers with focus on an endocannabinoid regulation of monoamines in depression and bipolar disorder. Leading role in neurochemistry and pathophysiology of mood disorders could be awarded to disturbed monoamine neurotransmission, dysfunction in energy metabolism of neurons, modulation of inflammatory and neuroendocrine pathways, and changes in activities of transcription factors, neurotrophic factors and other components involved in neuroplasticity. A role of endocannabinoid system in pathophysiology of mood disorders is supposed, but little known. In the light of new findings, there is potential for pharmacological regulation of endocannabinoid system in treatment of depressive and bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • aan het Rot M, Mathew SJ, Charney DS (2009) Neurobiological mechanisms in major depressive disorder. Can Med Assoc J 180(3):305–313

    Google Scholar 

  • Abdel-Razaq W, Kendall DA, Bates TE (2011) The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem Res 36(2):327–338

    PubMed  CAS  Google Scholar 

  • Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M (1997) ‘Vascular depression’ hypothesis. Arch Gen Psychiatry 54:915–922

    PubMed  CAS  Google Scholar 

  • Almeida OP, McCaul K, Hankey GJ, Norman P, Jamrozik K, Flicker L (2008) Homocysteine and depression in later life. Arch Gen Psychiatry 65:1286–1294

    PubMed  CAS  Google Scholar 

  • Aso E, Ozaita A, Valdizán EM, Ledent C, Pazos A, Maldonado R, Valverde O (2008) BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem 105(2):565–572

    PubMed  CAS  Google Scholar 

  • Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12(6):805–822

    PubMed  CAS  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 27(43):11700–11711

    PubMed  CAS  Google Scholar 

  • Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15(14):1623–1646

    PubMed  CAS  Google Scholar 

  • Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553

    PubMed  CAS  Google Scholar 

  • Barann M, Molderings G, Brüss M, Bönisch H, Urban BW, Göthert M (2002) Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br J Pharmacol 137(5):589–596

    PubMed  CAS  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358(1):55–68

    PubMed  CAS  Google Scholar 

  • Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PV, Amminger P, McGorry P, Malhi GS (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817

    PubMed  CAS  Google Scholar 

  • Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 62(10):1103–1110

    PubMed  CAS  Google Scholar 

  • Bottiglieri T (2005) Homocysteine and folate metabolism in depression. Prog Neuropsychopharmacol Biol Psychiatry 29:1103–1112

    PubMed  CAS  Google Scholar 

  • Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH (2000) Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 69:228–232

    PubMed  CAS  Google Scholar 

  • Bremmer MA, Deeg DJ, Beekman AT, Penninx BW, Lips P, Hoogendijk WJ (2007) Major depression in late life is associated with both hypo- and hypercortisolemia. Biol Psychiatry 62:479–486

    PubMed  CAS  Google Scholar 

  • Buggy Y, Cornelius V, Wilton L, Shakir SA (2011) Risk of depressive episodes with rimonabant: a before and after modified prescription event monitoring study conducted in England. Drug Saf 34(6):501–509

    PubMed  CAS  Google Scholar 

  • Bunney JN, Potkin SG (2008) Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 86:23–32

    PubMed  CAS  Google Scholar 

  • Butovsky E, Juknat A, Goncharov I, Elbaz J, Eilam R, Zangen A, Vogel Z (2005) In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Δ 9-tetrahydrocannabinol. J Neurochem 93:802–811

    PubMed  CAS  Google Scholar 

  • Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J, Rollis D, Drevets M, Gandhi S, Solorio G, Drevets WC (2006) Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 63(7):741–747

    PubMed  CAS  Google Scholar 

  • Cannon DM, Klaver JK, Gandhi SK, Solorio G, Peck SA, Erickson K, Akula N, Savitz J, Eckelman WC, Furey ML, Sahakian BJ, McMahon FJ, Drevets WC (2011) Genetic variation in cholinergic muscarinic-2 receptor gene modulates muscarinic2-receptor binding in vivo and accounts for reduced binding in bipolar disorder. Mol Psychiatry 16(4):407–418

    PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445

    PubMed  CAS  Google Scholar 

  • Carney MW, Chary TK, Laundy M, Bottiglieri T, Chanarin I, Reynolds EH, Toone B (1990) Red cell folate concentrations in psychiatric patients. J Affect Disord 19:207–213

    PubMed  CAS  Google Scholar 

  • Carvalho AF, Van Bockstaele EJ (2012) Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 38(1):59–67

    PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    PubMed  CAS  Google Scholar 

  • Castrén E, Rantamäki T (2010) Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment. CNS Drugs 24(1):1–7

    PubMed  Google Scholar 

  • Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D (2011) Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem 18(2):245–255

    PubMed  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    PubMed  CAS  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41

    PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29(3):311–324

    PubMed  CAS  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113(504):1237–1264

    PubMed  CAS  Google Scholar 

  • Coppen A, Bolander-Gouaille C (2005) Treatment of depression: time to consider folic acid and vitamin B12. J Psychopharmacol 19:59–65

    PubMed  CAS  Google Scholar 

  • Cowen PJ (2008) Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci 29(9):433–436

    PubMed  CAS  Google Scholar 

  • Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A (2011) Pharmacogenetics of antidepressants. Front Pharmacol 2(Art 6):1–21

    Google Scholar 

  • Graaf R de, Radovanovic M, Laar M van, Fairman B, Degenhardt L, Aguilar-Gaxiola S, Bruffaerts R, Girolamo G de, Fayyad J, Gureje O, Haro JM, Huang Y, Kostychenko S, Lépine JP, Matschinger H, Mora ME, Neumark Y, Ormel J, Posada-Villa J, Stein DJ, Tachimori H, Wells JE, Anthony JC (2010) Early cannabis use and estimated risk of later onset of depression spells: epidemiologic evidence from the population-based World Health Organization World Mental Health Survey Initiative. Am J Epidemiol 172(2):149–159

    PubMed  Google Scholar 

  • Degenhardt L, Coffey C, Romaniuk H, Swift W, Carlin JB, Hall WD, Patton GC (2013) The persistence of the association between adolescent cannabis use and common mental disorders into young adulthood. Addiction. 108(1):124–133

    Google Scholar 

  • Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P (2011) Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 130(1–2):66–74

    PubMed  CAS  Google Scholar 

  • Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH, Moreno FA, Heninger GR, Charney DS (1999) Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry 46(2):212–220

    PubMed  CAS  Google Scholar 

  • Denson TF, Earleywine M (2006) Decreased depression in marijuana users. Addict Behav 31(4):738–742

    PubMed  Google Scholar 

  • Derkinderen P, Valjent E, Toutant M, Corvol JC, Enslen H, Ledent C, Trzaskos J, Caboche J, Girault JA (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 23(6):2371–2382

    PubMed  CAS  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA Jr (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67(8):793–802

    PubMed  CAS  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    PubMed  CAS  Google Scholar 

  • Dragicevic N, Bradshaw PC, Mamcarz M, Lin X, Wang L, Cao C, Arendash GW (2011) Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer’s transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience 185:135–149

    PubMed  CAS  Google Scholar 

  • Drzyzga ŠR, Marcinowska A, Obuchowicz E (2009) Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull 79(5):248–257

    PubMed  CAS  Google Scholar 

  • Duman RS (2002) Synaptic plasticity and mood disorders. Mol Psychiatry 7(Suppl 1):S29–S34

    PubMed  CAS  Google Scholar 

  • Duman RS (2009) Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci 11(3):239–255

    PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127

    PubMed  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    PubMed  CAS  Google Scholar 

  • Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62(1):35–41

    PubMed  CAS  Google Scholar 

  • Einat H, Manji HK (2006) Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry 59(12):1160–1171

    PubMed  CAS  Google Scholar 

  • ElBatsh MM, Moklas MA, Marsden CA, Kendall DA (2012) Antidepressant-like effects of Δ 9-tetrahydrocannabinol and rimonabant in the olfactory bulbectomised rat model of depression. Pharmacol Biochem Behav 102(2):357–365

    PubMed  CAS  Google Scholar 

  • Elder BL, Mosack V (2011) Genetics of depression: an overview of the current science. Issues Ment Health Nurs 32(4):192–202

    PubMed  Google Scholar 

  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25(3–4):132–149

    PubMed  CAS  Google Scholar 

  • Esteban S, Garcàa-Sevilla JA (2012) Effects induced by cannabinoids on monoaminergic systems in the brain and their implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 38(1):78–87

    PubMed  CAS  Google Scholar 

  • Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47(1):1–7

    PubMed  Google Scholar 

  • Fava M, Kendler KS (2000) Major depressive disorder. Neuron 28(2):335–341

    PubMed  CAS  Google Scholar 

  • Fišar Z (2009) Phytocannabinoids and endocannabinoids. Curr. Drug Abuse Rev 2(1):51–75

    Google Scholar 

  • Fišar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 381(6):563–572

    PubMed  Google Scholar 

  • Fišar Z (2012) Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 38(1):68–77

    PubMed  Google Scholar 

  • Fišar Z, Hroudová J (2010a) Common aspects of neuroplasticity, stress, mood disorders and mitochondrial functions. Act Nerv Super Rediviva 52(1):3–20

    Google Scholar 

  • Fišar Z, Hroudová J (2010b) Intracellular signalling pathways and mood disorders. Folia Biol 56(4):135–148

    Google Scholar 

  • Fišar Z, Raboch J (2008) Depression, antidepressants, and peripheral blood components. Neuro Endocrinol Lett 29(1):17–28

    PubMed  Google Scholar 

  • Fišar Z, Hroudová J, Raboch J (2012) Neurotransmission in mood disorders. In: Mario Francisco Juruena (ed) Clinical, research and treatment approaches to affective disorders. InTech, Rijeka, pp 191–234. Available from: http://www.intechopen.com/articles/show/title/neurotransmission-in-mood-disorders

    Google Scholar 

  • Fitzgerald ML, Shobin E, Pickel VM (2012) Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuropsychopharmacol Biol Psychiatry 38(1):21–29

    PubMed  CAS  Google Scholar 

  • Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29(6):683–695

    PubMed  Google Scholar 

  • Folstein M, Liu T, Peter I, Buell J, Arsenault L, Scott T, Qiu WW (2007) The homocysteine hypothesis of depression. Am J Psychiatry 164:861–867

    PubMed  Google Scholar 

  • Forti P, Rietti E, Pisacane N, Olivelli V, Dalmonte E, Mecocci P, Ravaglia G (2010) Blood homocysteine and risk of depression in the elderly. Arch Gerontol Geriatr 51:21–25

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Holt S, Nilsson O, Jonsson KO, Tiger G, Jacobsson SO (2005) The endocannabinoid signaling system: pharmacological and therapeutic aspects. Pharmacol Biochem Behav 81(2):248–262

    PubMed  CAS  Google Scholar 

  • Gass P, Riva MA (2007) CREB, neurogenesis and depression. Bioessays 29:957–961

    PubMed  CAS  Google Scholar 

  • Gilbody S, Lightfoot T, Sheldon T (2007) Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J Epidemiol Community Health 61:631–637

    PubMed  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A 102(51):18620–18625

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Hill MN (2011) Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1575–1585

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Hill MN, Hillard CJ (2008) Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev 32(6):1152–1160

    PubMed  CAS  Google Scholar 

  • Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30:1223–1237

    PubMed  CAS  Google Scholar 

  • Gould TD, Dow ER, O’Donnell KC, Chen G, Manji HK (2007) Targeting signal transduction pathways in the treatment of mood disorders: recent insights into the relevance of the Wnt pathway. CNS Neurol Disord Drug Targets 6(3):193–204

    PubMed  CAS  Google Scholar 

  • Green R (2011) Indicators for assessing folate and vitamin B-12 status and for monitoring the efficacy of intervention strategies. Am J Clin Nutr 94:666S–672S

    PubMed  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57(3):261–267

    PubMed  CAS  Google Scholar 

  • Gu P, Defina LF, Leonard D, John S, Weiner MF, Brown ES (2012) Relationship between serum homocysteine levels and depressive symptoms: the Cooper Center Longitudinal Study. J Clin Psychiatry 73:691–695

    PubMed  CAS  Google Scholar 

  • Haddad JJ, Saadé NE, Safieh-Garabedian B (2002) Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 133(1–2):1–19

    PubMed  CAS  Google Scholar 

  • Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29(1):2–11

    PubMed  CAS  Google Scholar 

  • Hercher C, Turecki G, Mechawar N (2009) Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression. J Psychiatr Res 43(11):947–961

    PubMed  Google Scholar 

  • Hill MN, Gorzalka BB (2005) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 16(5–6):333–352

    PubMed  CAS  Google Scholar 

  • Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ, Gorzalka BB (2005) Down-regulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 30(3):508–515

    PubMed  CAS  Google Scholar 

  • Hill MN, Sun JC, Tse MT, Gorzalka BB (2006) Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol 9(3):277–286

    PubMed  CAS  Google Scholar 

  • Hill MN, Kambo JS, Sun JC, Gorzalka BB, Galea LA (2006) Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur J Neurosci 24(7):1845–1849

    PubMed  Google Scholar 

  • Hill MN, Carrier EJ, McLaughlin RJ, Morrish AC, Meier SE, Hillard CJ, Gorzalka BB (2008) Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem 106(6):2322–2336

    PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009) Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34(8):1257–1262

    PubMed  CAS  Google Scholar 

  • Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36(9):2085–2117

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Weinlander KM, Stuhr KL (2012) Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence. Neuroscience 204:207–229

    PubMed  CAS  Google Scholar 

  • Holsboer F, Liebl R, Hofschuster E (1982) Repeated dexamethasone suppression test during depressive illness. Normalisation of test result compared with clinical improvement. J Affect Disord 4:93–101

    PubMed  CAS  Google Scholar 

  • Hroudova J, Fisar Z (2010) Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 31(3):336–342

    PubMed  CAS  Google Scholar 

  • Hroudová J, Fišar Z (2011) Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin Neurosci 65(2):130–141

    PubMed  Google Scholar 

  • Hroudová J, Fišar Z (2012) In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol Lett 213(3):345–352

    PubMed  Google Scholar 

  • Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, Mann JJ, Arango V (2004) Up-regulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9(2):184–190

    PubMed  CAS  Google Scholar 

  • Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35(5):325–334

    PubMed  CAS  Google Scholar 

  • Ising M, Künzel HE, Binder EB, Nickel T, Modell S, Holsboer F (2005) The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuropsychopharmacol Biol Psychiatry 29:1085–1093

    PubMed  CAS  Google Scholar 

  • Janssen DG, Caniato RN, Verster JC, Baune BT (2010) A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 25(3):201–215

    PubMed  CAS  Google Scholar 

  • Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115(11):3104–3116

    PubMed  CAS  Google Scholar 

  • Jimerson DC, Post RM, Carman JS, Kammen DP van, Wood JH, Goodwin FK, Bunney WE Jr (1979) CSF calcium: clinical correlates in affective illness and schizophrenia. Biol Psychiatry 14(1):37–51

    PubMed  CAS  Google Scholar 

  • Jou S-H, Chiu N-Y, Liu C-S (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32(4):370–379

    PubMed  Google Scholar 

  • Kasper S, McEwen BS (2008) Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs 22(1):15–26

    PubMed  CAS  Google Scholar 

  • Kato T (2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21(1):1–11

    PubMed  CAS  Google Scholar 

  • Kato T (2008) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44(1):92–102

    PubMed  CAS  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2(3 Pt 1): 180–190

    Google Scholar 

  • Katyare SS, Rajan RR (1995) Effect of long-term in vivo treatment with imipramine on the oxidative energy metabolism in rat brain mitochondria. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 112(3):353–357

    PubMed  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902

    PubMed  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167(11):1305–1320

    PubMed  Google Scholar 

  • Lamers F, Vogelzangs N, Merikangas KR, Jonge P de, Beekman AT, Penninx BW (2013) Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 18(6):692–699

    Google Scholar 

  • Lazarou C, Kapsou M (2010) The role of folic acid in prevention and treatment of depression: an overview of existing evidence and implications for practice. Complement Ther Clin Pract 16:161–166

    PubMed  Google Scholar 

  • Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 20(Suppl 3):S302–S306

    PubMed  Google Scholar 

  • Leonard BE, Myint A (2009) The psychoneuroimmunology of depression. Hum Psychopharmacol 24(3):165–175

    PubMed  CAS  Google Scholar 

  • Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785

    PubMed  CAS  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I & ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24(1):27–53

    PubMed  CAS  Google Scholar 

  • Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J (2011) Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett 32(1):7–24

    PubMed  CAS  Google Scholar 

  • Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20(3):127–150

    PubMed  CAS  Google Scholar 

  • Marchalant Y, Brothers HM, Norman GJ, Karelina K, DeVries AC, Wenk GL (2009) Cannabinoids attenuate the effects of aging upon neuroinflammation and neurogenesis. Neurobiol Dis 34(2):300–307

    PubMed  CAS  Google Scholar 

  • Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159(4):379–387

    CAS  Google Scholar 

  • Mathew SJ, Manji HK, Charney DS (2008) Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 33(9):2080–2092

    PubMed  CAS  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    PubMed  CAS  Google Scholar 

  • Maurer IC, Schippel P, Volz H-P (2009) Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord 11(5):515–522

    PubMed  CAS  Google Scholar 

  • Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481

    PubMed  CAS  Google Scholar 

  • Mayberg HS (2003) Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65:193–207

    PubMed  Google Scholar 

  • Mayberg HS (2009) Targeted electrode-based modulation of neural circuits for depression. J Clin Investigation 119:717–725

    CAS  Google Scholar 

  • Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48(8):830–843

    PubMed  CAS  Google Scholar 

  • McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ (2006) Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 75(4–5):237–257

    PubMed  CAS  Google Scholar 

  • Mendelsohn D, Riedel WJ, Sambeth A (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33(6):926–952

    PubMed  CAS  Google Scholar 

  • Mendlewicz J (2009) Disruption of the circadian timing systems: molecular mechanisms in mood disorders. CNS Drugs 23(Suppl 2):15–26

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24(3):521–529

    PubMed  CAS  Google Scholar 

  • Meyer JH (2012) Neuroimaging markers of cellular function in major depressive disorder: implications for therapeutics, personalized medicine, and prevention. Clin Pharmacol Ther 91(2):201–214

    PubMed  CAS  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Praschak-Rieder N, Wilson AA, Houle S (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63(11):1209–1216

    PubMed  CAS  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Miler L, Rusjan P, Bloomfield PM, Clark M, Sacher J, Voineskos AN, Houle S (2009) Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry 66(12):1304–1312

    PubMed  Google Scholar 

  • Mill J, Petronis A (2007) Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 12(9):799–814

    PubMed  CAS  Google Scholar 

  • Miller AL (2008) The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev 13:216–226

    PubMed  Google Scholar 

  • Mirnikjoo B, Brown SE, Kim HF, Marangell LB, Sweatt JD, Weeber EJ (2001) Protein kinase inhibition by ω-3 fatty acids. J Biol Chem 276(14):10888–10896

    PubMed  CAS  Google Scholar 

  • Morrish AC, Hill MN, Riebe CJ, Gorzalka BB (2009) Protracted cannabinoid administration elicits antidepressant behavioral responses in rats: role of gender and noradrenergic transmission. Physiol Behav 98(1–2):118–124

    PubMed  CAS  Google Scholar 

  • Nahon E, Israelson A, Abu-Hamad S, Varda SB (2005) Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 579(22):5105–5110

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25

    PubMed  CAS  Google Scholar 

  • Nikisch G (2009) Involvement and role of antidepressant drugs of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor function. Neuro Endocrinol Lett 30(1):11–16

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212–2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046(1–2):45–54

    PubMed  CAS  Google Scholar 

  • Pacher P, Mechoulam R (2011) Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 50(2):193–211

    PubMed  CAS  Google Scholar 

  • Pariante CM (2009) Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci 1179:144–152

    PubMed  CAS  Google Scholar 

  • Parolaro D, Realini N, Vigano D, Guidali C, Rubino T (2010) The endocannabinoid system and psychiatric disorders. Exp Neurol 224(1):3–14

    PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145(12):5431–5438

    PubMed  CAS  Google Scholar 

  • Patton GC, Coffey C, Carlin JB, Degenhardt L, Lynskey M, Hall W (2002) Cannabis use and mental health in young people: cohort study. BMJ 325(7374):1195–1198

    PubMed  Google Scholar 

  • Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003:250–272

    PubMed  CAS  Google Scholar 

  • Pedersen W (2008) Does cannabis use lead to depression and suicidal behaviours? A population-based longitudinal study. Acta Psychiatr Scand 118(5):395–403

    PubMed  CAS  Google Scholar 

  • Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 54(5):515–528

    PubMed  Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109

    PubMed  CAS  Google Scholar 

  • Porcelli S, Drago A, Fabbri C, Serretti A (2011) Mechanisms of antidepressant action: an integrated dopaminergic perspective. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1532–1543

    PubMed  CAS  Google Scholar 

  • Przegaliński E, Göthert M, Frankowska M, Filip M (2005) WIN 55,212–2-induced reduction of cocaine hyperlocomotion: possible inhibition of 5-HT3 receptor function. Eur J Pharmacol 517(1–2):68–73

    Google Scholar 

  • Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33(11):2551–2565

    PubMed  CAS  Google Scholar 

  • Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, Tverdal A, Tell GS, Nygård O, Vollset SE (2006) The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 136:1731S–1740S

    PubMed  CAS  Google Scholar 

  • Rodràguez-Gaztelumendi A, Rojo ML, Pazos A, Dàaz A (2009) Altered CB1 receptor-signaling in prefrontal cortex from an animal model of depression is reversed by chronic fluoxetine. J Neurochem 108(6):1423–1433

    Google Scholar 

  • Rubino T, Vigano’ D, Realini N, Guidali C, Braida D, Capurro V, Castiglioni C, Cherubino F, Romualdi P, Candeletti S, Sala M, Parolaro D (2008) Chronic Δ 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 33(11):2760–2771

    PubMed  CAS  Google Scholar 

  • Rubino T, Realini N, Braida D, Alberio T, Capurro V, Viganò D, Guidali C, Sala M, Fasano M, Parolaro D (2009) The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 15(4):291–302

    PubMed  CAS  Google Scholar 

  • Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359

    PubMed  Google Scholar 

  • Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30(8):1037–1043

    PubMed  CAS  Google Scholar 

  • Sagredo O, Ramos JA, Fernández-Ruiz J, Rodràguez ML, Miguel R de (2006) Chronic Δ 9-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 372:313–317

    PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    PubMed  CAS  Google Scholar 

  • Sapolsky RM (2004) Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry 56(3):137–139

    PubMed  Google Scholar 

  • Savage DG, Lindenbaum J, Stabler SP, Allen RH (1994) Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med 96:239–246

    PubMed  CAS  Google Scholar 

  • Savitz J, Drevets WC (2009) Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 33(5):699–771

    PubMed  Google Scholar 

  • Savitz J, Lucki I, Drevets WC (2009) 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 88(1):17–31

    Google Scholar 

  • Savitz JB, Drevets WC (2013) Neuroreceptor imaging in depression. Neurobiol Dis 52:49–65

    Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122(5):509–522

    PubMed  CAS  Google Scholar 

  • Schmidt HD, Shelton RC, Duman RS (2011) Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36(12):2375–2394

    PubMed  CAS  Google Scholar 

  • Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62(1):55–64

    PubMed  CAS  Google Scholar 

  • Schulz P, Steimer T (2009) Neurobiology of circadian systems. CNS Drugs 23(Suppl 2):3–13

    PubMed  CAS  Google Scholar 

  • Selvaraj S, Murthy NV, Bhagwagar Z, Bose SK, Hinz R, Grasby PM, Cowen PJ (2011) Diminished brain 5-HT transporter binding in major depression: a positron emission tomography study with [11C]DASB. Psychopharmacology (Berl) 213(2–3):555–562

    CAS  Google Scholar 

  • Shaltiel G, Chen G, Manji HK (2007) Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Curr Opin Pharmacol 7:22–26

    PubMed  CAS  Google Scholar 

  • Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295

    PubMed  CAS  Google Scholar 

  • Shearman LP, Rosko KM, Fleischer R, Wang J, Xu S, Tong XS, Rocha BA (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14(8):573–582

    PubMed  CAS  Google Scholar 

  • Stavrovskaya IG, Narayanan MV, Zhang W, Krasnikov BF, Heemskerk J, Young SS, Blass JP, Brown AM, Beal MF, Friedlander RM, Kristal BS (2004) Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J Exp Med 200(2):211–222

    PubMed  CAS  Google Scholar 

  • Steiner MA, Wanisch K, Monory K, Marsicano G, Borroni E, Bächli H, Holsboer F, Lutz B, Wotjak CT (2008) Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. Pharmacogenomics J 8(3):196–208

    PubMed  CAS  Google Scholar 

  • Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10(10):900–919

    PubMed  CAS  Google Scholar 

  • Tiemeier H, Tuijl HR van, Hofman A, Meijer J, Kiliaan AJ, Breteler MM (2002) Vitamin B12, folate, and homocysteine in depression: the Rotterdam Study. Am J Psychiatry 159:2099–2101

    PubMed  Google Scholar 

  • Tolmunen T, Hintikka J, Voutilainen S, Ruusunen A, Alfthan G, Nyyssönen K, Viinamäki H, Kaplan GA, Salonen JT (2004) Association between depressive symptoms and serum concentrations of homocysteine in men: a population study. Am J Clin Nutr 80:1574–1578

    PubMed  CAS  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367

    PubMed  CAS  Google Scholar 

  • Uher R (2008) The implications of gene-environment interactions in depression: will cause inform cure? Mol Psychiatry 13(12):1070–1078

    PubMed  CAS  Google Scholar 

  • Urigüen L, Pérez-Rial S, Ledent C, Palomo T, Manzanares J (2004) Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46(7):966–973

    PubMed  Google Scholar 

  • Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44(14):903–909

    PubMed  Google Scholar 

  • Velenovská M, Fišar Z (2007) Effect of cannabinoids on platelet serotonin uptake. Addict Biol 12:158–166

    PubMed  Google Scholar 

  • Vreeburg SA, Hoogendijk WJ, Pelt J van, Derijk RH, Verhagen JC, Dyck R van, Smit JH, Zitman FG, Penninx BW (2009) Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry 66:617–626

    PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16(3):239–249

    PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (2004) The global burden of disease, 2004 update, part 3: Disease incidence, prevalence and disability. http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_part3.pdf

  • World Health Organization (2012) Depression. http://www.who.int/mental_health/management/depression/en/

  • Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM (2009) The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 14(1):51–59

    PubMed  CAS  Google Scholar 

  • Yildiz-Yesiloglu A, Ankerst DP (2006) Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 30(6):969–995

    PubMed  CAS  Google Scholar 

  • Zarate CA Jr, Singh J, Manji HK (2006a) Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 59(11):1006–1020

    CAS  Google Scholar 

  • Zarate CA Jr , Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006b) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864

    CAS  Google Scholar 

  • Zhang WH, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, Friedlander RM (2008) Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke 39(2):455–462

    PubMed  Google Scholar 

  • Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):722–729

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by project MSM0021620849 given by Ministry of Education, Youth and Sports, and by project PRVOUK-P26/LF1/4 given by Charles University in Prague, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Fišar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fišar, Z. (2013). Pathophysiology of Mood Disorders and Mechanisms of Action of Antidepressants and Mood Stabilizers. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_6

Download citation

Publish with us

Policies and ethics