Skip to main content

The extra-terrestrial vacuum-ultraviolet wavelength range

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

  • 2443 Accesses

Abstract

Electromagnetic radiation in the vacuum-ultraviolet (VUV) and extra-terrestrial range at wavelengths from 10 nm to 300 nm is absorbed in the upper atmosphere by ozone, molecular and atomic oxygen, and molecular nitrogen. Observations at wavelengths down to ≈ 200 nm can be carried out from stratospheric balloons, and observations below 200 nm require space platforms operating at altitudes above 250 km. The VUV spectral region contains emission lines and continua arising from plasma at formation temperatures ranging from about 104 K to more than 107 K. This chapter describes the wide range of plasma diagnostic techniques available at VUV wavelengths, and the development of instrumentation for studies of the high-temperature solar outer atmosphere and astrophysical plasmas. Finally, the prospects for future studies are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For details see http://www.epa.gov/ozone.

  2. 2.

    Often called in the literature “emissivity”, which is, however, the ratio of the emission of a surface to the corresponding black-body radiation.

  3. 3.

    Any instrumental line broadening is assumed to have been taken out before.

  4. 4.

    For a Gaussian profile of an emission line at λ 0, the Doppler width, Δ λ D, is related to the standard deviation, σ, and the full-width at half maximum (FWHM), Δ λ FWHM, through the equation:

    $$\displaystyle{ \varDelta \lambda _{\mathrm{D}}\ =\ \sigma \sqrt{2}\ =\ \varDelta \lambda _{\mathrm{FWHM}}/(2\sqrt{\ln 2})\quad. }$$
    (5.11)
  5. 5.

    An angular resolution element of 1′ ′ at 1 ua corresponds to spatial scale of ≈ 725 km on the solar disk.

  6. 6.

    Daily images can be seen at http://sohowww.nascom.nasa.gov.

  7. 7.

    Full information and results are available at http://trace.lmsal.com. (TRACE and many other space programmes have an open data policy.)

  8. 8.

    Information on the TIMED mission can be found at http://timed.jhuapl.edu.

  9. 9.

    Details can be found at http://solarb.msfc.nasa.gov.

  10. 10.

    See http://stereo.gsfc.nasa.gov.

  11. 11.

    See http://stereo.gsfc.nasa.gov.

  12. 12.

    Secondary Electron Conduction

  13. 13.

    Full details of the mission can be found at http://archive.stsci.edu/iue.

  14. 14.

    Details of the mission can be found at http://archive.stsci.edu/euve.

  15. 15.

    Details of the FUSE mission can be found at http://fuse.pha.jhu.edu.

  16. 16.

    Full information on the GALEX mission can be found at http://galex.caltech.edu.

  17. 17.

    Scientific Instrument Computer and Data Handling

  18. 18.

    http://www.stsci.edu/jwst/

References

  • Abarca JF, Casiccia CC (2002) Skin cancer and ultraviolet-B radiation under the Antarctic ozone hole: Southern Chile, 1987–2000. Photodermatology Photoimmunology Photomedicine 18:294–302

    Article  Google Scholar 

  • Athay RG (1966) Theoretical line intensities. v. Solar UV emission lines of heavy elements. Astrophys J 145:784–795

    Article  ADS  Google Scholar 

  • Bartoe J-DF, Brueckner GE (1975) New stigmatic, coma-free, concave grating spectrograph. J Opt Soc Am 65:13–21

    Article  ADS  Google Scholar 

  • Bartoe J-DF, Brueckner GE, Purcell JD, Tousey R (1977) Extreme ultraviolet spectrograph ATM experiment S082B. Appl Opt 16:879–886

    ADS  Google Scholar 

  • Boggess A, Carr FA, Evans DC (plus 30 authors) (1978a) The IUE spacecraft and instrumentation. Nature 275:372–377

    Google Scholar 

  • Boggess A, Bohlin RC, Evans DC (plus 31 authors) (1978b) In-flight performance of the IUE. Nature 275:377–385

    Google Scholar 

  • Boksenberg A, Evans RG, Fowler RG (plus 11 authors) (1973) The ultraviolet sky-survey telescope in the TD-1A satellite. Mon Not R Astron Soc 163:291–322

    Google Scholar 

  • Bowyer S (1997) The unique variable line space spectrometers on the EUVE satellite: In-flight performance and selected scientific results. Proc SPIE 2517:97–106

    Article  ADS  Google Scholar 

  • Brandt JC, Heap SR, Beaver EA (plus 22 authors) (1994) The Goddard high resolution spectrograph: Instrument, goals, and science results. PASP 106: 890–908

    Google Scholar 

  • Brueckner GE, Bartoe J-DF, Cook JW (plus two authors) (1986) HRTS results from Spacelab 2. Adv Space Res 6:263–272

    Google Scholar 

  • Brueckner GE, Edlow KL, Floyd LE (plus two authors) (1993) The solar spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J Geophys Res 98:10695–10712

    Google Scholar 

  • Brueggemann HP (1968) Deep conic cassegrains. In: Conic Mirrors. The Focal Press, London, New York, Section VIII:102–111

    Google Scholar 

  • Chamberlin P, Pesnell WD, Thompson P (2012) The Solar Dynamics Observatory Springer ISBN 978-1-46414-3672-0

    Google Scholar 

  • Clampin M, Ford H, Bartko F (plus 22 authors) (2000) Advanced camera for surveys. Proc SPIE 4013:344–351

    Google Scholar 

  • Code AD (1969) Photoelectric photometry from a space vehicle. PASP 81:475–487

    Article  ADS  Google Scholar 

  • Code AD, Houck TE, McNall JF (plus two authors) (1970) Ultraviolet photometry from the Orbital Astronomical Observatory. i. Instrumentation and operation. Astrophys J 161:377–388

    Google Scholar 

  • Culhane JL, Harra LK, James AM (plus 36 authors) (2007) The EUV Imaging Spectrometer for Hinode. Sol Phys 243:19–61

    Google Scholar 

  • Danforth CW, Shull JM (2008) The low-z intergalactic medium. iii H I and metal absorbers at z < 0. 4. Astrophys J 679:194–219

    Google Scholar 

  • David C, Gabriel AH, Bely-Dubau F (plus three authors) (1998) Measurement of the electron temperature gradient in a solar coronal hole. Astron Astrophys 336:L90–94

    Google Scholar 

  • de Gruijl FR (2002) Photocarcinogenesis: UVA vs UVB radiation. Skin Pharmacology and Applied Skin Physiology 15:316–320

    Article  Google Scholar 

  • de Jager C, Hoekstra R, van der Hucht KA (plus five authors) (1974) The orbiting stellar ultraviolet spectrophotometer S 59 in ESRO’s TD-1A satellite. Astrophys Space Sci 26:207–262

    Google Scholar 

  • de Jager C (2001) Early space research. In: The Century of Space Science Vol 1 (eds JAM Bleeker, J Geiss, and MCE Huber) Kluwer Academic Publishers, Dordrecht, 203–223

    Google Scholar 

  • Delaboudinière J-P, Artzner GE, Brunaud J (plus 24 authors) (1995) EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Sol Phys 162: 291–312

    Google Scholar 

  • Dere KP, Bartoe J-DF, Brueckner GE (plus two authors) (1987) Discrete subresolution structures in the solar transition zone. Sol Phys 114: 223–237

    Google Scholar 

  • Dere KP, Landi E, Mason HE (plus two authors) (1997) CHIANTI – an atomic data base for emission lines. Astron Astrophys Suppl Ser 125:149–173

    Google Scholar 

  • Doschek GA, Warren HP, Laming JM (plus five authors) (1997) Electron densities in the solar polar coronal holes from density sensitive line ratios of Si viii and Si x. Astrophys J 482:L109–L112

    Google Scholar 

  • Ebbets DC, Garner HW (1986) Dead-time effects in pulse-counting Digicon detectors. Proc SPIE 627:638–644

    Article  ADS  Google Scholar 

  • Edelman LL (1990) The Hubble Space Telescope mission, history, and systems. Proc SPIE 1358:422–441

    Article  ADS  Google Scholar 

  • Edlén B (1943) Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Z Astrophys 22:30–64

    ADS  Google Scholar 

  • Feldman U, Laming JM (2000) Element abundances in the upper atmospheres of the Sun and stars: Update of observational results. Physica Scripta 61:222–252

    Article  ADS  Google Scholar 

  • Fleck B, Švestka Z (1997) The first results from SOHO. Kluwer Academic Press

    Google Scholar 

  • Ford H, Clampin M, Hartig G (plus 34 authors) (2003) Overview of the Advanced Camera for Surveys on-orbit performance. Proc SPIE 4854:81–94

    Google Scholar 

  • Friedman H (1959) Rocket spectroscopy. J Geophys Res 64:1751–754

    Google Scholar 

  • Gabriel AH (1976) A magnetic model of the solar transition region. Phil Trans R Soc London Ser A 281:339–352

    Article  ADS  Google Scholar 

  • Green JC, Wilkerson E, Morse JA (2003) Status and performance of the cosmic origins spectrograph. Proc SPIE 5164:17–23

    Article  ADS  Google Scholar 

  • Green JC, Froning CS, Osterman S (plus 24 authors) (2012) The Cosmic Origins Spectrograph Astrophys J 744:1–15

    Google Scholar 

  • Greenfield P, Paresce F, Baxter D (plus nine authors) (1991) In-flight performance of the Faint Object Camera of the Hubble Space Telescope. Proc SPIE 1494:16–39

    Google Scholar 

  • Grotrian W (1939) Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona. Naturwissenschaften 27:214–214

    Article  ADS  MATH  Google Scholar 

  • Hall LA, Schweizer W, Heroux L, Hinteregger HE (1965) Solar XUV spectrum of March, 1964. Astrophys J 142:13–15

    Article  ADS  Google Scholar 

  • Handy BN, Acton LW, Kankelborg CC (plus 45 authors) (1999) The Transition Region and Coronal Explorer. Sol Phys 187:229–260

    Google Scholar 

  • Harrison RA, Sawyer EC, Carter MK (plus 36 authors) (1995) The Coronal Diagnostic Spectrometer for the Solar and Heliospheric Observatory. Sol Phys 162:233–290

    Google Scholar 

  • Hartig GF, Crocker JH, Ford HC (1993) Status and optical performance of the Corrective Optics Space Telescope Axial Replacement. Proc SPIE 1945:17–24

    Article  ADS  Google Scholar 

  • Hinteregger HE, Hall LA, Schweizer W (1964) Solar XUV spectrum from 310 Å to 55 Å. Astrophys J 140:319–327

    Google Scholar 

  • Hock RA, Chamberlin PC, Woods TN (plus four authors) (2012) Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results. Sol Phys 275:145–178

    Google Scholar 

  • Hoekstra R, Kamperman TM, Wells CW, Werner W (1978) Balloon-borne ultraviolet stellar echelle spectrograph. Appl Opt 17:604–613

    Article  ADS  Google Scholar 

  • Hovestadt D, Hilchenbach M, Bürgi A (plus 30 authors) (1995) CELIAS—Charge Element and Isotope Analysis System for SOHO. Sol Phys 162:441–481

    Google Scholar 

  • Howard RA, Moses JD, Vourlidas A (plus 43 authors) (2008) The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci Rev 136: 67–115

    Google Scholar 

  • Huber MCE, Foukal PV, Noyes RW (plus five authors) (1974) Extreme–ultraviolet observations of coronal holes: Initial results from Skylab. Astrophys J 194: L115–L118

    Google Scholar 

  • Jacchia LG (1971) Revised static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophysical Observatory SR 332

    Google Scholar 

  • Jacchia JG (1977) Themospheric temperature, density and composition: New models. Smithsonian Astrophysical Observatory SR 375

    Google Scholar 

  • Jedrezejewski RI, Hartig G, Jakobsen P (plus two authors) (1994) In-orbit performance of the COSTAR-corrected Faint Object Camera. Astrophys J 435:L7–L10

    Google Scholar 

  • Jenkins EB, Tripp TM, Fitzpatrick EL (plus 12 authors) (1998) Ultraviolet absorption lines from high-velocity gas in the Vela supernova remnant: New insights from the space telescope imaging spectrograph echelle observations of HD 72089. Astrophys Journ 492:L147–L150.

    Google Scholar 

  • Kaiser ML, Kucera TA, Davila JM (plus three authors) (2008) The STEREO Mission: An Introduction Space Sci Rev 156:5–16

    Google Scholar 

  • Kimble RA, Woodgate BE, Bowers CW (plus 49 authors) (1998) The on-orbit performance of the Space Telescope Imaging Spectrograph. Proc SPIE 3356: 188–202

    Google Scholar 

  • Kimble RA, McKenty JW, O’Connell RW, Townsend JA (2008) Wide Field Camera 3: A powerful new imager for the Hubble Space Telescope. Proc SPIE 7010:1–12

    Google Scholar 

  • Kohl JL, Parkinson WH, Kurucz RL (1978) Center and limb solar spectrum in high spectral resolution 225.2 nm to 319.6 nm. Harvard-Smithsonian Center for Astrophysics, Cambridge

    Google Scholar 

  • Kohl JL, Gardner LD, Strachan L, Hassler DM (1994) Ultraviolet spectroscopy of the extended solar corona during the Spartan 201 mission. Space Sci Rev 70:253–261

    Article  ADS  Google Scholar 

  • Kohl JL, Esser R, Gardner LD (plus 37 authors) (1995) The Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory. Sol Phys 162:313–356

    Google Scholar 

  • Krieger AS, Timothy AF, Roelof EC (1973) A coronal hole and its identification as a source of a high velocity solar wind stream. Sol Phys 29:505–525

    Article  ADS  Google Scholar 

  • Kuperus M (1969) The heating of the solar corona. Space Sci Rev 9:713–739

    Article  ADS  Google Scholar 

  • Lamy L, Prange R, Hansen KC (plus 16 authors) (2012) Earth-based detection of Uranus’ aurorae. Geophys Res Lett 139:L07105

    Google Scholar 

  • Landi E, Del Zanna G, Young PR (plus three authors) (2006) CHIANTI – An atomic database for emission lines. vii: New data for X-rays and other improvements. Astrophys J Suppl Ser 162:261–280

    Google Scholar 

  • Landi E, Del Zanna G, Young PR (plus two authors) (2012) CHIANTI – An atomic database for emission lines. xii: Version 7 of the database. Astrophys J 744:99

    Google Scholar 

  • Lang J, McWhirter RWP, Mason HE (1990) The interpretation of the spectral line intensities from the chase spectrometer on Spacelab 2. Sol Phys 129: 31-81

    Google Scholar 

  • Lean J, VanHoosier M, Brueckner G (plus three authors) (1992) SUSIM/UARS observations of the 120 to 300 nm flux variations during the maximum of the solar cycle—Inferences for the 11-year cycle. Geophys Res Lett 19:2203–2206

    Google Scholar 

  • Lemen JR, Title AM, Akin DJ (plus 44 authors) (2012) The Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO). Sol Phys 275:17–40

    Google Scholar 

  • Lyot B (1937) Quelques observations de la couronne solaire et des protubérances en 1935. L’Astronomie 51:203–218

    ADS  Google Scholar 

  • Mariska JT (1986) The quiet solar transition region. Ann Rev Astron Astrophys 24:23–48

    Article  ADS  Google Scholar 

  • Mariska JT (1992) The Solar Transition Region. Cambridge University Press, Cambridge

    Google Scholar 

  • Martin C, Barlow T, Barnhart W (plus 48 authors) (2003) The Galaxy Evolution Explorer. Proc SPIE 4854:336–350

    Google Scholar 

  • Mason HE, Monsignori Fossi BC (1994) Spectroscopic diagnostics in the VUV for solar and stellar plasmas. Astron Astrophys Rev 6:123–179

    Article  ADS  Google Scholar 

  • Mason HE, Young PR, Pike CD (plus four authors) (1997) Application of spectroscopic diagnostics to early observations with the SOHO Coronal Diagnostic Spectrometer. Sol Phys 170:143–161

    Google Scholar 

  • Massey HSW, Boyd RLF (1960) The ozone layer. In: The Upper Atmosphere. Hutchinson of London, 129–138

    Google Scholar 

  • Mazzotta P, Mazzitelli G, Colafrancesco S, Vittoria N (1998) Ionization balance for optically thin plasmas: Rate coefficients for all atoms and ions of the elements H to Ni. Astron Astrophys Suppl Ser 133:403–409

    Article  ADS  Google Scholar 

  • Morrissey P, Schiminovich D, Barlow TA (plus 35 authors) (2005) The On-Orbit Performance Of the Galaxy Evolution Explorer. Astrophys J 619:L7–L10

    Google Scholar 

  • Morton DC (1967) The far-ultraviolet spectra of six stars in Orion. Astrophys J 147:1017–1024

    Article  ADS  Google Scholar 

  • Morton DC, Spitzer L Jr (1966) Line spectra of delta and pi Scorpii in the far-ultraviolet. Astrophys J 144:1–12

    Article  ADS  Google Scholar 

  • Mount GH, Rottman GJ, Timothy JG (1980) The solar spectral irradiance 1200–2550 Å at solar maximum. J Geophys Res 85:4271–4274

    Google Scholar 

  • Nicolet M, Aikin AC (1960) The formation of the D region of the ionosphere. J Geophys Res 65:1469–1483

    Article  ADS  Google Scholar 

  • Pesnel WD, Thompson BJ, Chamberlin PC (2012) The Solar Dynamics Observatory (SDO). Sol Phys 275:3–15

    Article  ADS  Google Scholar 

  • Pottasch SR (1963) The lower solar corona: Interpretation of the ultraviolet spectrum. Astrophys J 137:945–966

    Article  ADS  Google Scholar 

  • Reeves EM, Parkinson WH (1970) An atlas of extreme-ultraviolet spectroheliograms from OSO-IV. Astrophys J Suppl Ser 21:1–409

    Article  ADS  Google Scholar 

  • Reeves EM, Foukal PV, Huber MCE (plus five authors) (1974) Observations of the chromospheric network: Initial results from ATM. Astrophys J 188:L27–L29

    Google Scholar 

  • Reeves EM, Huber MCE, Timothy JG, Withbroe GL (1977) Photometric calibration of the EUV spectroheliometer on ATM. Appl Opt 16:849–857

    ADS  Google Scholar 

  • Robinson RD, Ake TB, Lindler DJ (plus 16 authors) (1998) The Goddard High Resolution Spectrograph: Post–COSTAR characteristics. PASP 110:68–78

    Google Scholar 

  • Rodgers DH, Vaughan AH (1993) Development of the second generation Wide Field Planetary Camera for Hubble Space Telescope. Proc SPIE 1920:288–296

    Article  ADS  Google Scholar 

  • Rogerson JB (1963) The Orbiting Astronomical Observatories. Space Sci Rev 2:621–652

    Article  ADS  Google Scholar 

  • Rogerson JB, Spitzer L, Drake JF (plus four authors) (1973) Spectophotometric results from the Copernicus satellite. i Instrumentation and performance. Astrophys J 181:L97–L102

    Google Scholar 

  • Rottman G, Woods T (1995) SOLSTICE technique for measuring long-term solar variability. Proc SPIE 2583:347–355

    Article  ADS  Google Scholar 

  • Russo V (2001) The space age and the origin of space research. In: The Century of Space Science Vol 1 (eds JAM Bleeker, J Geiss, MCE Huber) Kluwer Academic Publishers, Dordrecht, 25–58

    Google Scholar 

  • Sahnow DJ, Warren Moos H, Ake TB (plus 32 authors) (2000) On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE). Proc SPIE 4013:334–343

    Google Scholar 

  • Samson JAR (1980)—second printing from 1967— in Techniques of Vacuum Ultraviolet Spectroscopy. Pied Publications, Lincoln, 56–60

    Google Scholar 

  • Savage BD (2001) Early ultraviolet spectroscopy from space. In: The Century of Space Science Vol 1 Kluwer Academic Publishers, Dordrecht 287–300

    Google Scholar 

  • Schühle U (2013) Intensified solid state sensor cameras: ICCD and IAPS. ISSI SR-009:455–465

    Google Scholar 

  • Schühle U, Hochedez J-F (2013) Solar-blind UV detectors based on wide band gap semiconductors. ISSI SR-009:467–477

    Google Scholar 

  • Sirk MM, Vallerga JV, Finley DS (plus two authors) (1997) Performance of the extreme ultraviolet explorer imaging telescopes. Astrophys J Suppl Ser 110: 347–356

    Google Scholar 

  • Schumann V (1901) Ueber ein verbessertes Verfahren zur Herstellung ultraviolettempfindlicher Platten. Ann Physik 310:349–374

    Article  ADS  Google Scholar 

  • Spiller E (1974) Multilayer interference coatings for the vacuum ultraviolet. In: Space Optics (eds BJ Thompson, RR Shannon), National Academy of Sciences, Washington, DC, 581–597

    Google Scholar 

  • Timothy AF, Timothy JG (1969) Long term intensity variations in the solar helium ii Lyman alpha line. J Geophys Res 75:6950–6958

    Google Scholar 

  • Timothy AF, Timothy JG, Willmore AP, Wager JH (1972) The ionchemistry and thermal balance of the E- and F-regions of the daytime ionosphere: An experimental study. J Atmos Terr Phys 34:969–1035

    Article  ADS  Google Scholar 

  • Timothy JG, Chambers RM, D’Entremont AM (plus two authors) (1975) A sounding rocket spectroheliometer for photometric studies at ultraviolet wavelengths. Space Sci Instrum 1:23–49

    Google Scholar 

  • Timothy JG (2013) Microchannel plates for photon detection and imaging in space. ISSI SR-009:391–421

    Google Scholar 

  • Tousey R (1977) Apollo Telescope Mount of Skylab — an overview. Appl Opt 16:825–836

    Google Scholar 

  • Tousey R, Bartoe J-DF, Brueckner GE, Purcell JD (1977) Extreme ultraviolet spectroheliograph ATM experiment S082A. Appl Opt 16:870–876

    ADS  Google Scholar 

  • Trauger JT, Ballester GE, Burrows CJ (plus 15 authors) (1994) The on-orbit performance of WFPC 2. Astrophys J 435:L3–L6

    Google Scholar 

  • VanHoosier ME, Bartoe J-DF, Brueckner GE, (plus two authors) (1977) Experience with Schumann-type XUV film on Skylab. Appl Opt 16:887–892

    Google Scholar 

  • VanHoosier ME, Bartoe J-DF, Brueckner GE, Prinz DK (1988) Absolute spectral irradiance 120 nm – 400 nm. Astrophys Lett Comm 27, 163-168

    Google Scholar 

  • Wilhelm K, Curdt W, Marsch E (plus 13 authors) (1995) SUMER—Solar Ultraviolet Measurements of Emitted Radiation. Sol Phys 162:189–231

    Google Scholar 

  • Wilhelm K (2002) Spectroradiometry of spatially-resolved solar plasma structures. ISSI SR-002:37–50

    ADS  Google Scholar 

  • Wilhelm K (2003) Past and recent observations of the solar upper atmosphere at vacuum-ultraviolet wavelengths. J Atmos Sol Terr Phys 65:167–189

    Article  ADS  Google Scholar 

  • Wilhelm K, Dwivedi BN, Marsch E, Feldman U (2004) Observations of the Sun at vacuum ultraviolet wavelengths from space. Part i: Concepts and instrumentation. Space Sci Rev 111:415–480

    Article  ADS  Google Scholar 

  • Wilhelm K, Marsch E, Dwivedi BN, Feldman U (2007) Observations of the Sun at vacuum ultraviolet wavelengths from space. Part ii: Results and interpretations. Space Sci Rev 133:103–179

    Article  ADS  Google Scholar 

  • Wilhelm K, Fröhlich C (2013) Photons — from source to detector. ISSI SR-009: 21–53

    Google Scholar 

  • Windorst RA, Cohen SH, Hathi NP (plus 36 authors) (2011) The Hubble Space Telescope Wide Field Camera 3. Early Release Science Data Panchromatic Faint Object Counts for 0.2 – 2 μm Wavelength. Astrophys J Suppl 193:1–33

    Google Scholar 

  • Withbroe GL, Noyes RW (1977) Mass and energy flow in the solar chromosphere and corona. Ann Rev Astron Astrophys 15:363–387

    Article  ADS  Google Scholar 

  • Woodgate BE, Tandberg-Hanssen EA, Bruner EC (plus 11 authors) (1980) The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission. Sol Phys 65:73–90

    Google Scholar 

  • Woodgate BE, Kimble RA, Bowers CW (plus 41 authors) (1998) The Space Telescope Imaging Spectrograph design. PASP 110:1183–1204

    Google Scholar 

  • Woods TN, Bailey S, Eparvier F (plus nine authors) (1998) TIMED Solar EUV Experiment. Proc SPIE 3442:180–191

    Google Scholar 

  • Woods TN, Eparvier FG, Hock R (plus 15 authors) (2012) Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments. Sol Phys 275:115–143

    Google Scholar 

  • Wülser JP, Lemen JR, Tarbell TD (plus 31 authors) (2004) EUVI: The STEREO—SECCHI extreme ultraviolet imager. Proc SPIE 5171:111–122

    Google Scholar 

  • Young C (2009) Solar ultraviolet radiation and skin cancer. Occupational Medicine 59:82–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timothy, J.G., Wilhelm, K., Xia, L. (2013). The extra-terrestrial vacuum-ultraviolet wavelength range. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics