Skip to main content

X-ray astronomy: energies from 0.1 keV to 100 keV

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

Following a short introduction to the cosmic and solar branches of the subject, the thermal and non-thermal radiation processes for the production of both cosmic and solar X-rays are briefly outlined. Methods for X-ray detection are described along with reflecting systems for collecting, focussing and dispersing X-rays. The use of CCDs and cryogenic detectors for non-dispersive spectroscopy is also discussed. The present state of the art in the topic is presented through the description of several recent and current space missions in both the solar and cosmic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    transition wavelength and formation temperature

References

  • Aschwanden M, Wuelser J-P, Nitta NV, Lemen JR (2009) Solar Flare and CME Observations with STEREO/EUVI. Sol Phys 256:3–40

    Article  ADS  Google Scholar 

  • Blake RL, Chubb TA, Friedman H, Unzicker AE (1963) Interpretation of X-ray photograph of the Sun. Astrophys J 137:3–15

    Article  ADS  Google Scholar 

  • Bowyer S, Byram ET, Chubb TA, Friedman, H (1964) Lunar occultation of X-ray emission from the Crab Nebula. Science 146:912–917

    Article  ADS  Google Scholar 

  • Burnight TR (1949) Soft X-radiation in the upper atmosphere. Phys Rev 76:165

    Google Scholar 

  • Culhane JL, Pounds KA, Willmore AP, Sanford PW (1964) The solar X-ray spectrum below 14 Å. Space Research 4:741–758

    Google Scholar 

  • Culhane JL, Hiei E, Doschek GA (plus 24 authors) (1991) The Bragg crystal spectrometer for Solar-A. Sol Phys 136:89–104

    Google Scholar 

  • Culhane JL, Harra LK, James AM (plus 36 authors) (2007) The EUV Imaging Spectrometer for Hinode. Sol Phys 243:19–61

    Google Scholar 

  • Delaboudinière J-P, Artzner GE, Brunaud J (plus 25 authors) (1995) EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Sol Phys 162: 291–312

    Google Scholar 

  • den Herder JW, Brinkman AC, Kahn SM (plus 35 authors) (2001) The Reflection Grating Spectrometer on board XMM-Newton. Astron Astrophys 365:L7–L17

    Google Scholar 

  • Dere KP, Landi E, Mason HE (plus two authors) (1997) CHIANTI – An atomic database for emission lines. Astron Astrophys Suppl Ser 125:149–173

    Google Scholar 

  • Doschek GA, Mariska JT, Warren HP (plus six authors) (2007) Nonthermal velocities in solar active regions observed with the Extreme-Ultraviolet Imaging Spectrometer on Hinode. Astrophys J 667:L109–L112

    Google Scholar 

  • Feng L, Inhester B, Solanki SK (plus four authors) (2007) First Stereoscopic Coronal Loop Reconstructions from STEREO SECCHI Images. Astrophys J 671:L205–L208

    Google Scholar 

  • Gehrels N, Chincarini G, Giomi P (plus 68 authors) (2004) The Swift Gamma-Ray Burst Mission. Astrophys J 611:1005–1020

    Google Scholar 

  • Giacconi R, Gursky H, Paolini FR, Rossi BB (1962) Evidence for X rays from sources outside the Solar System. Phys Rev Lett 9:439–443

    Article  ADS  Google Scholar 

  • Giacconi R, Reidy WP, Zehnpfennig T (plus two authors) (1965) Solar X-ray image obtained using grazing-incidence optics. Astrophys J 142, 1274–1278

    Google Scholar 

  • Giacconi R, Kellogg E, Gorenstein P (plus two authors) (1971) An X-Ray scan of the galactic plane from Uhuru. Astrophys J 165:L27–L35

    Google Scholar 

  • Gursky H, Giacconi R, Gorenstein P (plus five authors) (1966) A measurement of the location of the X-ray source SCO X-1. Astrophys J 146:310–316

    Google Scholar 

  • Golub L, Deluca E, Austin G (plus 26 authors) (2007) The X-Ray Telescope (XRT) for the Hinode mission. Sol Phys 243:63–86

    Google Scholar 

  • Handy BN, Acton LW, Kankelborg CC (plus 45 authors) (1999) The Transition Region and Coronal Explorer. Sol Phys 187:229–260

    Google Scholar 

  • Harra LK, Sakao T, Mandrini C (plus five authors) (2008) Outflows at the edges of active regions: Contribution to solar wind formation? Astrophys J 676:L147–L150; Attn: Erratum. Astrophys J 677:L159

    Google Scholar 

  • Harrison FA, Boggs S, Christensen F (plus 29 authors) (2010) The Nuclear Spectroscopic telescope array (NuSTAR). Proc SPIE 7732:77320S–77320S8

    Google Scholar 

  • Holland A (2013) X-ray CCDs. ISSI SR-009:443–453

    Google Scholar 

  • Howard RA, Moses JD, Vourlidas A (plus 43 authors) (2008) The Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Sci Rev 136: 67–115

    Google Scholar 

  • Hudson HS, Acton LW, Freeland SL (1996) A long-duration solar flare with mass ejection and global consequences. Astrophys J 470:629–635

    Article  ADS  Google Scholar 

  • Hurford GJ (2013) X-ray imaging with collimators, masks and grids. ISSI SR-009:243–254

    Google Scholar 

  • Irwin KD (1995) An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett, 66, 1998–2000

    ADS  Google Scholar 

  • Jansen F, Lumb D, Altieri B (plus 12 authors) (2001) XMM-Newton Observatory. I. The spacecraft and operations. Astron Astrophys 365:L1–L6

    Google Scholar 

  • Kaastra JS, Mewe R, Nieuwenhuijzen H (1996) SPEX: a new code for spectral analysis of X & UV spectra. in UV and X-ray Spectroscopy of Astrophysical Plasmas, eds K Yamashita and T Watanabe, Tokyo Univ Press, p. 411–414

    Google Scholar 

  • Kano R, Sakao T, Hara H (plus 15 authors) (2008) The Hinode X-Ray Telescope (XRT): Camera design, performance and operations. Sol Phys 249:263–279

    Google Scholar 

  • Kelley RL, Mitsuda K, Allen CA (plus 40 authors) (2007) The Suzaku high resolution X-ray spectrometer. PASJ 59:77–112

    Google Scholar 

  • Kosugi T, Masuda S, Makishima K (plus seven authors) (1991) The Hard X-ray Telescope (HXT) for the Solar-A Mission. Sol Phys 136:17–36

    Google Scholar 

  • Koyama K, Petre R, Gotthelf EV (plus four authors) (1995) Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature 378:255–258

    Google Scholar 

  • Landi E, Del Zanna G, Young PR (plus three authors) (2006) CHIANTI – An atomic database for emission lines. VII. New data for Xrays and other improvements. Astrophys J Suppl Ser 162:261–280

    Google Scholar 

  • Lemaire P, Aschenbach BA, Seely JF (2013) Space telescopes. ISSI SR-009:183–210

    Google Scholar 

  • Lemen JR, Title AM, Akin DJ (plus 44 authors) (2012) The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275:17–40

    Google Scholar 

  • Lin RP, Dennis BR, Hurford GJ (plus 63 authors) (2002) The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol Phys 210:3–32

    Google Scholar 

  • McCammon D, Moseley SH, Mather JC, Mushotzky RF (1984) Experimental tests of a single-photon calorimeter for X-ray spectroscopy. J Appl Phys 56:1263–1266

    ADS  Google Scholar 

  • Mitsuda K, Mautz M, Inoue H (plus 141 authors) (2007) The X-ray observatory Suzaku. PASJ 59:51–57

    Google Scholar 

  • Nakariakov VM, Ofman L, Deluca EE (plus two authors) (1999) TRACE observation of damped coronalloop oscillations: Implications for coronal heating. Science 285:862–864

    Google Scholar 

  • Oda M (1965) High-resolution X-ray collimator with broad field of view for astronomical use. Appl Opt 4:143

    ADS  Google Scholar 

  • Ogawara Y, Takano T, Kato T (plus five authors) (1991) The Solar-A Mission — an overview. Sol Phys 136:1–16

    Google Scholar 

  • Porter FS (2013) X-ray calorimeters. ISSI SR-009:497–514

    Google Scholar 

  • Sandage A, Osmer P, Giacconi R (plus nine authors) (1966) On the optical identification of SCO X-1. Astrophys J 146:316–321

    Google Scholar 

  • Schrijver CJ, Aulanier G, Title AM (plus two authors) (2011) The 2011 February 15 X2 Flare, Ribbons, Coronal Front, and Mass Ejection: Interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys J 738:167–190

    Google Scholar 

  • Schühle U (2013) Intensified solid state sensor cameras: ICCD and IAPS. ISSI SR-009:455–465

    Google Scholar 

  • Thompson BJ, Gurman JB, Neupert WM (plus seven authors) (1999) SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal Moreton waves. Astrophys J 517:L151–L154

    Google Scholar 

  • Timothy JG (2013) Microchannel plates for photon detection and imaging in space. ISSI SR-009:391–421

    Google Scholar 

  • Trümper J, Pietsch W, Reppin C (plus three authors) (1978) Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1 Astrophys J 219:L105–L110

    Google Scholar 

  • Trümper J (1982) The ROSAT Mission. Adv Space Res 2:241–249

    ADS  Google Scholar 

  • Tsuneta S, Acton L, Bruner M (plus seven authors) (1991) The Soft X-ray Telescope for the Solar-A Mission. Sol Phys 136:37–67

    Google Scholar 

  • Vaiana GS, Davis JM, Giacconi R (plus four authors) (1973) X-ray observations of the solar corona: Preliminary Skylab results Astrophys J 185:L47–L51

    Google Scholar 

  • Weisskopf MC, Brinkman B, Canizares C (plus four authors) (2002) Five years of observations with the Chandra X-ray observatory PASP 114:1–24

    Google Scholar 

  • Werner N, Böhringer H, Kaastra JS (plus three authors) (2006) XMM-Newton high-resolution spectroscopy reveals the chemical evolution of M 87. Astron Astrophys 459:353–360

    Google Scholar 

  • Wilhelm K, Fröhlich C (2013) Photons—from source to detector. ISSI SR-009: 21–53

    Google Scholar 

  • Windt DL (1998) Multilayer films for figured X-ray optics. Proc SPIE 3448:371–382

    Google Scholar 

  • Wolter H (1952) Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. Ann Phys 10:94–114

    MATH  Google Scholar 

  • Wülser J-P, Title AM, Lemen JR (plus 11 authors) (2012) The Interface Region Imaging Spectrograph for the IRIS Small Explorer Mission. Proc SPIE 8443:844308

    Google Scholar 

  • Yoshimori M, Okudaira K, Hirasima Y (plus seven authors) (1991) The Wide Band Spectrometer on the Solar-A. Sol Phys 136:69–88

    Google Scholar 

  • Young PR, Del Zanna G, Mason HE (plus nine authors) (2007) EUV emission lines and diagnostics observed with Hinode/EIS. Publ Astron Soc Japan 59:S857–S864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Culhane, J.L. (2013). X-ray astronomy: energies from 0.1 keV to 100 keV. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics