Skip to main content

Photons — from source to detector

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

The central theme of the book “Observing Photons in Space” is the detection and characterization of photons with instruments aboard spacecraft. This chapter presents a global overview of the fundamental processes that accompany photons all the way from their origin in the source region to their detection in our instruments. The radiation of the Sun is taken as example in some cases and is treated in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This and other constants are taken from CODATA recommended values of the fundamental physical constants: 2006 (Mohr et al 2008), or when available from 2010 CODATA at http://physics.nist.gov/cuu/constants.

  2. 2.

    In the following discussion, the notations ν and λ will be used to simplify the equations, unless emphasis is placed on the fact that mean values are considered in special cases.

  3. 3.

    Follows from the definition of the SI base unit “metre”(BIPM 2006).

  4. 4.

    A zero mass follows from the special theory of relativity and a speed of light in vacuum constant for all frequencies. Various methods have been used to constrain the photon mass to m ν  < 10−49 kg (cf., Amsler et al 2008, Goldhaber and Nieto 1971). These authors also discuss the consequences of a finite mass for the existence of longitudinal electromagnetic waves.

  5. 5.

    Einstein and Stern (1913) argued in favour of a zero-point energy hν∕2 of a resonator, first introduced by Planck (1909). The zero-point energy of the electromagnetic field causes, for instance, the Casimir forces (cf., Casimir 1949; Mohideen and Roy 1998).

  6. 6.

    For more details see Chapter 32 (Fröhlich 2013).

  7. 7.

    In equations related to Doppler shifts, there is a danger of confusing the frequency symbol, ν, with the relative speed between the inertial systems, v. Therefore, a subscript is used for v in all these cases. Note that \(\vert v_{\mathrm{S}}\vert <c_{0}\), cf., page 22.

  8. 8.

    This situation was considered by Fermi (1932) for the non-relativistic case.

  9. 9.

    The details of the transfer of the momentum from the absorbing or emitting systems—usually atomic particles—to the detector device require quantum-mechanical considerations beyond the scope of this chapter (cf., Dicke 1953; Mössbauer 1958).

  10. 10.

    A typographical error in Einstein’s equation has been corrected in Equation 2.28.

  11. 11.

    Note that certain materials exhibit a double refraction.

  12. 12.

    Fresnel’s formulas using a complex index of refraction are given in Chapter 9 (Lemaire et al 2013).

  13. 13.

    Telescopes usually collect radiation in the far-field region of a source, where the diffraction limit is of importance. In the near-field region, however, focusing beyond this limit is possible (cf., e.g., Lerosey et al 2007).

  14. 14.

    For completeness it should be mentioned that non-demolition measurements of single photons were accomplished (Nogues et al 1999), as well as electric field measurements at sub-photon levels (Brune et al 1994; Foster et al 2002).

  15. 15.

    Note that time-delayed photo effects have been observed for semi-transparent photocathodes that are not in line with Equation 2.59 (Billard and Burns 1983).

References

  • Adenier G (2008) Quantum entanglement, fair sampling, and reality: Is the moon there when nobody looks? Am J Phys 76:147–152

    Google Scholar 

  • Aharonov Y, Bohm D (1961) Time in the quantum theory and the uncertainty relation for time and energy. Phys Rev 122:1649–1658

    Google Scholar 

  • Amsler C, Doser M, Antonelli M (plus 170 authors)(2008) Review of particle physics. Phys Lett B 667:1–1340

    Google Scholar 

  • Avrett EH, Kurucz RL, Loeser R (2006) Identification of the broad solar emission features near 117 nm. Astron Astrophys 452:651–655

    Google Scholar 

  • Ayres TR (2000) The SOHO-stellar connection. Sol Phys 193:273–297

    Google Scholar 

  • Bell JS (1964) On the Einstein–Podolsky–Rosen paradox. Physics 1:195–200

    Google Scholar 

  • Billard TC, Burns G (1983) Time-delayed photoelectric effect. Nature 306:247–248

    Google Scholar 

  • Blamont JE, Roddier F (1961) Precise observation of the profile of the Fraunhofer strontium resonance line. Evidence for the gravitational redshift on the Sun. Phys Rev Lett 7:437–440

    Google Scholar 

  • Bolzano B (1843) Ein paar Bemerkungen über eine neue Theorie in Herrn Professor Chr. Doppler’s Schrift. Ann Phys (Leipzig) 136:83–88

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light (7th edition). Cambridge University Press, Cambridge New York

    Google Scholar 

  • Born M, Heisenberg W, Jordan P (1926) Zur Quantenmechanik. II. Z Phys 35: 557–615

    Google Scholar 

  • Bose SN (1924) Plancks Gesetz und Lichtquantenhypothese. Z Phys 26:178–181

    Google Scholar 

  • Brault JW (1962) The gravitational redshift in the solar spectrum. PhD Diss, Princeton University

    Google Scholar 

  • Brault J (1963) Gravitational redshift of solar lines. Bull Am Phys Soc 8:28

    Google Scholar 

  • Brillouin L (1931) Die Quantenstatistik. Verlag von Julius Springer, Berlin

    Google Scholar 

  • Brillouin L (1960) Wave propagation group velocity. Academic Press Inc, New York, London

    Google Scholar 

  • Brugel EW, Shull JM, Seab CG (1982) The ultraviolet spectrum of Herbig-Haro object 2H. Astrophys J 262:L35–L39

    Google Scholar 

  • Brune M, Nussenzveig P, Schmidt-Kahler F (plus four authors) (1994) From Lamb shift to light shift: Vacuum and subphoton cavity fields measured by atomic phase sensitive detection. Phys Rev Lett 72:3339–3342

    Google Scholar 

  • Bureau International des Poids et Mesures (BIPM) (2006) Le Système International d’Unités (SI). 8e édition, Sèvres

    Google Scholar 

  • Carretti E, Rosset C (2013) Polarization measurements of the Cosmic Microwave Background. ISSI SR-009:615–625

    Google Scholar 

  • Casimir HBG (1949) Sur les forces van der Waals–London. J Chim Phys 46:407–410

    Google Scholar 

  • Clauser JF, Horn MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884

    Google Scholar 

  • Compton AH (1923) A quantum theory of the scattering of X-rays by light elements. Phys Rev 21:483–502

    Google Scholar 

  • Cooper LN (1956) Bound electron pairs in degenerate Fermi gas. Phys Rev 104:1189–1190

    Google Scholar 

  • Cranshaw TE, Schiffer JP, Whitehead AB (1960) Measurement of the gravitational red shift using the Mössbauer effect in Fe57. Phys Rev Lett 4:163–164

    Google Scholar 

  • Culhane JL (2013) X-ray astronomy: energies from 0.1 keV to 100 keV. ISSI SR-009:73–91

    Google Scholar 

  • Darwin CG (1923) The wave theory and the quantum theory. Nature 111:771–773

    Google Scholar 

  • Dicke RH (1953) The effect of collisions upon the Doppler width of spectral lines. Phys Rev 89:472–473

    Google Scholar 

  • Dicke RH, Peebles PJE, Roll PG, Wilkinson DT (1965) Cosmic black-body radiation. Astrophys J 142:414–419

    Google Scholar 

  • Dirac PAM (1927) The quantum theory of the emission and absorption of radiation. Proc Roy Soc London A 114:243–265

    Google Scholar 

  • Doppler CA (1843) Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh königl böhm Ges Wiss 2:465–482

    Google Scholar 

  • Eaton HAC (2013) Infrared imaging bolometers. ISSI SR-009:515–524

    Google Scholar 

  • Ehrenfest P (1925) Energieschwankungen im Strahlungsfeld oder Kristallgitter bei Superposition quantisierter Eigenschwingungen. Z Phys 34:362–373

    Google Scholar 

  • Einstein A (1905a) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Phys (Leipzig) 322:132–148

    Google Scholar 

  • Einstein A (1905b) Zur Elektrodynamik bewegter Körper. Ann Phys (Leipzig) 322:891–921

    Google Scholar 

  • Einstein A (1905c) Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann Phys (Leipzig) 323:639–641

    Google Scholar 

  • Einstein A (1914) Bemerkungen zu Paul Harzers Abhandlung “Über die Mitführung des Lichtes im Glas und die Aberration”. Astron Nachr 1999:7–10

    Google Scholar 

  • Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys (Leipzig) 354:769–822

    Google Scholar 

  • Einstein A (1917) Zur Quantentheorie der Strahlung. Phys Z 18:121–128

    Google Scholar 

  • Einstein A, Stern O (1913) Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Ann Phys (Leipzig) 345:551–560

    Google Scholar 

  • Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777–780

    Google Scholar 

  • Eisner E (1967) Aberration of light from binary stars—a paradox? Am J Phys 35:817–819

    Google Scholar 

  • Falla DF, Floyd MJ (2002) Superluminal motion in astronomy. Eur J Phys 23:69–81

    Google Scholar 

  • Fermi E (1932) Quantum theory of radiation. Rev Mod Phys 4:87–132

    Google Scholar 

  • Floyd L, Reiser P, Crane P (plus three authors) (1998) UV measurements from SUSIM on UARS. Sol Phys 177:79–86

    Google Scholar 

  • Foukal P, Ortiz A, Schnerr R (2011) Dimming of the 17th Century Sun. Astrophys J 733:L38, DOI: 10.1088/2041-8205/733/2/L38

    Google Scholar 

  • Foster GT, Smith WP, Reiner JE, Orozco LA (2002) Time-dependent electric field fluctuations at the subphoton level. Phys Rev A 66:033807-1–12

    Google Scholar 

  • Fröhlich C (2006) Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65

    Google Scholar 

  • Fröhlich C (2010) Spectral solar irradiance over solar cycle 23 from sunphotometers of VIRGO on SOHO. AGU Fall Meeting, available at ftp://ftp.pmodwrc.ch/pub/Claus/AGU_Fall2010/GC33C-08.ppt

  • Fröhlich C (2012) Total solar irradiance observations. Surveys Geophys 33 (3–4):453–473

    Google Scholar 

  • Fröhlich C (2013) Solar radiometry. ISSI SR-009:565–581

    Google Scholar 

  • Fröhlich C, Wehrli C (2006) Comparison of the WRC85 solar spectral irradiance with RSSV1 and the SPM of VIRGO/SOHO. In: SORCE Science Meeting, 19-22 September 2006, San Juan Islands, Washington, USA. Poster available from ftp://ftp.pmodwrc.ch/pub/Claus/SORCE-2006/SSI_poster.pdf

  • Fröhlich C, Crommelynck D, Wehrli C (plus seven authors) (1997) In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol Phys 175:267–286

    Google Scholar 

  • Fröhlich C, Huber MCE, Solanki S, von Steiger R (eds) (1998) Solar composition and its evolution – From core to corona, Space Sci Ser ISSI, Vol 5. Kluwer Academic Publishers, Dordrecht, and Space Sci Rev 85, Nos. 1-2, 1998

    Google Scholar 

  • Garcia HA (1994) Temperature and emission measure from GOES soft X-ray measurements. Sol Phys 154:275–308

    Google Scholar 

  • Glauber RJ (1963) The quantum theory of optical coherence. Phys Rev 130:2529–2539

    Google Scholar 

  • Glauber RJ (2007) Quantum theory of optical coherence (selected papers and lectures). Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Goldhaber AS, Nieto MM (1971) Terrestrial and extraterrestrial limits on the photon mass. Rev Mod Phys 43:277–296

    Google Scholar 

  • Griffin MJ, Ade PAR (2013) Narrow-band imaging by use of interferometers. ISSI SR-009:333–347

    Google Scholar 

  • Hajdas W, Suarez-Garcia E (2013) Polarimetry at high energies. ISSI SR-009:599–615

    Google Scholar 

  • Hallwachs W (1888) Über den Einfluss des Lichtes auf elektrostatisch geladene Körper. Ann Phys Chem 269:301–312

    Google Scholar 

  • Hanbury Brown R, Twiss RQ (1956a) Correlation between photons in two coherent beams of light. Nature 177:27–29

    Google Scholar 

  • Hanbury Brown R, Twiss RQ (1956b) A test of a new type of stellar interferometer on Sirius. Nature 178:1046–1048

    Google Scholar 

  • Hay HJ, Schiffer JP, Cranshaw TE, Egelstaff PA (1960) Measurement of the red shift in an accelerated system using the Mössbauer effect in Fe57. Phys Rev Lett 4:165–166

    Google Scholar 

  • Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Phys 43:172–178

    Google Scholar 

  • Hentschel K (2005) Testing relativity. In: Physics before and after Einstein (M. Mamone Capria ed.). IOS Press, Amsterdam pp. 163–182

    Google Scholar 

  • Hertz H (1887) Über einen Einfluss des ultravioletten Lichtes auf die elektrische Entladung. Wied Ann 31:983–1000

    Google Scholar 

  • Hilgevoord J (1996) The uncertainty principle for energy and time. Am J Phys 64:1451–1456

    Google Scholar 

  • Hilgevoord J (1998) The uncertainty principle for energy and time. II. Am J Phys 66:396–402

    Google Scholar 

  • Hinteregger HE, Hall LA (1969) Solar extreme ultraviolet emissions in the range 260 to 1300 Å observed from OSO-III. Sol Phys 6:175–182,

    Google Scholar 

  • Hinteregger HE, Fukui K, Gilson BR (1981) Observational, reference and model data on solar EUV, from measurements on AE-E. Geophys Res Lett 8:1147–1150

    Google Scholar 

  • Hong CK, Ou ZY, Mandel L (1987) Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 59: 2044–2046

    Google Scholar 

  • Hovsepyan YI (1998) Some notes on the relativistic Doppler effect. Phys Uspekhi 41:941–944

    Google Scholar 

  • Huber MCE, Pauluhn A, Timothy JGT, Zehnder A (2013) Calibration. ISSI SR-009:629–638

    Google Scholar 

  • Hurford GJ (2013) X-Ray imaging with collimators, masks and grids. ISSI SR-009:243–254

    Google Scholar 

  • Hutchinson IH (2002) Principles of plasma diagnostics (2nd edition). Cambridge University Press, Cambridge New York Melbourne Madrid Cape Town

    Google Scholar 

  • Irwin KD, Hilton GC, Wollman DA, Martinis JM (1998) Thermal-response time of superconducting transition-edge microcalorimeters. J Appl Phys 83:3978–3985

    Google Scholar 

  • Ives HE (1950) Extrapolation from the Michelson-Morley experiment. J Opt Soc Am 40:185–191

    Google Scholar 

  • Ives HE, Stilwell GR (1938) An experimental study of the rate of a moving atomic clock. J Opt Soc Am 28:215–226

    Google Scholar 

  • Ives HE, Stilwell GR (1941) An experimental study of the rate of a moving atomic clock. II. J Opt Soc Am 31:369–374

    Google Scholar 

  • Jackson JD (1999) Classical electrodynamic (3rd edition). John Wiley & Sons, New York etc.

    Google Scholar 

  • Judge DL, Ogawa HS, McMullin DR (plus two authors) (2002) The SOHO CELIAS/SEM EUV database from SC23 minimum to the present. Adv Space Res 29:1963–1968

    Google Scholar 

  • Kahler SW, Kreplin RW (1991) The NRL SOLRAD X-ray detectors – A summary of the observations and a comparison with the SMS/GOES detectors. Sol Phys 133:371–384

    Google Scholar 

  • Kaivola M, Poulsen O, Riis E, Lee SA (1985) Measurements of the relativistic Doppler shift in neon. Phys Rev Lett 54:255–258

    Google Scholar 

  • Kanbach G, Schönfelder V, Zehnder A (2013) High-energy astrophysics—energies above 100 keV. ISSI SR-009:55–72

    Google Scholar 

  • Kopeikin SM, Ozernoy LM (1999) Post-Newtonian theory for precision Doppler measurements of binary star orbits. Astrophys J 523:771–785

    Google Scholar 

  • Labs D, Neckel H (1962) Die absolute Strahlungsintensität der Sonnenmitte im Spektralbereich 4010 ≤ λ ≤ 6569 Å. Z Astrophys 55:269–289

    Google Scholar 

  • Labs D, Neckel H (1967) Die absolute Strahlungsintensität der Mitte der Sonnenscheibe im Spektralbereich 3288 ≤ λ ≤ 12 480 Å. Z Astrophys 65:133–185

    Google Scholar 

  • Lamarre JM, Dole H (2013) The Cosmic Microwave Background. ISSI SR-009:165–182

    Google Scholar 

  • Lamb WE, Jr (1995) Anti-photon. Appl Phys B 60:77–84

    Google Scholar 

  • von Laue M (1920) Zur Theorie der Rotverschiebung der Spektrallinien an der Sonne. Z Phys 3:389–395

    Google Scholar 

  • Lemaire P (2013) Normal- and grazing-incidence gratings and mountings used in space. ISSI SR-009:211–223

    Google Scholar 

  • Lemaire P, Aschenbach BA, Seely JF (2013) Space telescopes. ISSI SR-009:183–210

    Google Scholar 

  • Lenard P (1902) Über die lichtelektrische Wirkung. Ann Phys (Leipzig) 313: 149–199

    Google Scholar 

  • Lerosey G, de Rosny J, Tourin A, Fink M (2007) Focusing beyond the diffraction limit with far-field time reversal. Science 315:1120–1122

    Google Scholar 

  • Lindegren L (2013) High-accuracy positioning: astrometry. ISSI SR-009:299–311

    Google Scholar 

  • Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409: 490–493

    Google Scholar 

  • Louradour F, Reynaud F, Colombeau B, Froehly C (1993) Interference fringes between two separate lasers. Am J Phys 61:242–245

    Google Scholar 

  • Mandelstam LI, Tamm IE (1945) The uncertainty relation between energy and time in non-relativistic quantum mechanics. J Phys (USSR) 9:249–254

    Google Scholar 

  • Martin DDE, Verhoeve P (2013) Superconducting tunnel junctions. ISSI SR-009:479–496

    Google Scholar 

  • Mather JC, Cheng ES, Eplee RE, Jr. (plus 18 authors) (1990) A preliminary measurement of the Cosmic Microwave Background spectrum by the Cosmic Background Explorer (COBE) satellite. Astrophys J 354:L37–L40

    Google Scholar 

  • Mather JC, Cheng ES, Cottingham DA (plus 20 authors) (1994) Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument. Astrophys J 420:439–444

    Google Scholar 

  • Mikhailov AA (1959) The deflection of light by the gravitational field of the Sun. Mon Not R Astr Soc 119:593–608

    Google Scholar 

  • Millikan RA (1916) A direct photoelectric determination of Plank’s “h”. Phys Rev 7:355–390

    Google Scholar 

  • Mohideen U, Roy A (1998) Precision Measurement of the Casimir force from 0.1 to 0.9 μm. Phys Rev Lett 81:4549–4552

    Google Scholar 

  • Mohr PJ, Taylor BN, Newell DB (2008) CODATA recommended values of the fundamental physical constants: 2006. arXiv:0801.0028

    Google Scholar 

  • Mössbauer RL (1958) Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z Physik 151:124–143

    Google Scholar 

  • Neckel H (2003) On the Sun’s absolute disk-center and mean disk intensities, its limb darkening, and its ‘limb temperature’ (λ λ330 to 1099 nm). Sol Phys 212:239–250

    Google Scholar 

  • Nimtz G, Stahlhofen AA (2008) Universal tunneling time for all fields. Ann Phys (Berlin) 17:374–379

    Google Scholar 

  • Nisius R (2000) Photon structure from deep inelastic electron-photon scattering. Phys Rep 332:165–317

    Google Scholar 

  • Nogues G, Rauschenbeutel A, Osnaghi S (plus three authors) (1999) Seeing a single photon without destroying it. Nature 400:239–242

    Google Scholar 

  • Okun LB (1989) The concept of mass. Phys Today 42(60):31–36

    Google Scholar 

  • Okun LB (2000) Photons and static gravity. Mod Phys Lett A 15(31):1941–1947

    Google Scholar 

  • Okun LB, Selivanov KG, Telegdi VL (2000) On the interpretation of the redshift in a static gravitational field. Am J of Phys 68(2):115–119

    Google Scholar 

  • Peacock A, Verhoeve P, Rando N (plus nine authors) (1996) Single optical photon detection with a superconducting tunnel junction. Nature 381:135–137

    Google Scholar 

  • Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142:419–421

    Google Scholar 

  • Perryman MAC, Foden CL, Peacock A (1993) Optical photon counting using superconducting tunnel junctions. Nucl Instrum Methods Phys Res Sect A 325: 319–325

    Google Scholar 

  • Planck M (1900) Über irreversible Strahlungsvorgänge. Ann Phys (Leipzig) 306: 69–122

    Google Scholar 

  • Planck M (1901) Über das Gesetz der Energieverteilung im Normalspektrum. Ann Phys (Leipzig) 309:553–563

    Google Scholar 

  • Planck M (1909) Zur Theorie der Wärmestrahlung. Ann Phys (Leipzig) 336: 758–768

    Google Scholar 

  • Porter FS (2013) X-ray calorimeters. ISSI SR-009:497–514

    Google Scholar 

  • Pound RV, Rebka GA (1959) Gravitational red-shift in nuclear resonance. Phys Rev Lett 3:439–441

    Google Scholar 

  • Puccini GD, Selleri F (2002) Doppler effect and aberration of light from the point of view of absolute motion. Nuovo Cim 117 B:283–293

    Google Scholar 

  • Quirrenbach A (2013) Interferometric imaging from space. ISSI SR-009:313–332

    Google Scholar 

  • Raman CV (1928) A new radiation. Ind J Phys 2:387–398

    Google Scholar 

  • Rarity JG, Ridley KD, Tapster PR (1987) Absolute measurement of detector quantum efficiency using parametric down-conversion. Appl Opt 26:4616–4619

    Google Scholar 

  • Romestain R, Delaet B, Renaud-Goud P (plus four authors) (2004) Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting. New J Phys 6:129-1–15

    Google Scholar 

  • Rottman GJ (1988) Observations of solar UV and EUV variability. Adv Space Res 8:53–66

    Google Scholar 

  • Rottman G (2000) Variations of solar ultraviolet irradiance observed by the UARS SOLSTICE – 1991 to 1999. Space Sci Rev 94:83–91

    Google Scholar 

  • Rottman G, Harder J, Fontenla J (plus three authors) (2005) The spectral irradiance monitor (SIM): Early observations. Sol Phys 230:205–224

    Google Scholar 

  • Rottman GJ, Woods TN, McClintock W (2006) SORCE solar UV irradiance results. Adv Space Res 37:201–208

    Google Scholar 

  • Schönfelder V, Kanbach G (2013) Imaging through Compton scattering and pair creation. ISSI SR-009:225–242

    Google Scholar 

  • Schühle U (2013) Intensified solid state sensor cameras: ICCD and IAPS. ISSI SR-009:455–465

    Google Scholar 

  • Schühle U, Hochedez J-F (2013) Solar-blind UV detectors based on wide band gap semiconductors. ISSI SR-009:467–477

    Google Scholar 

  • Shapiro II (1964) Fourth test of general relativity. Phys Rev Lett 26:789–791

    Google Scholar 

  • Shapiro II, Ash ME, Ingalls RP, Smith WB, Campbell DB, Dyce RB, Jurgens RF, Pettengill GH (1971) Fourth test of general relativity: New radar result. Phys Rev Lett 26:1132–1135

    Google Scholar 

  • Smekal A (1923) Zur Quantentheorie der Dispersion. Naturwissenschaften 43: 873–875

    Google Scholar 

  • Smith DM (2013) Hard X-ray and gamma-ray detectors. ISSI SR-009:367–389

    Google Scholar 

  • Snider JL (1972) New measurement of the solar gravitational red shift. Phys Rev Lett 28:853–856

    Google Scholar 

  • Snider JL (1974) Comments on two recent measurements of the solar gravitational red-shift. Sol Phys 36:233–234

    Google Scholar 

  • Sommerfeld A (1978) Optik, Verlag Harri Deutsch, Thun, Frankfurt/Main.

    Google Scholar 

  • Stenflo JO (2013) Stokes polarimetry of the Zeeman and Hanle effects. ISSI SR-009:583–598

    Google Scholar 

  • Strekalov DV, Pittman TB, Shih YH (1998) What we can learn about single photons in a two-photon interference experiment. Phys Rev A 57:567–570

    Google Scholar 

  • Sunyaev RA, Zel’dovich YB (1980) Microwave background radiation as a probe of the contemporary structure and history of the universe. Ann Rev Astron Astrophys 18:537–560

    Google Scholar 

  • Takahashi T, Abe K, Endo M (plus 67 authors) (2007) Hard X-ray detector (HXD) on board Suzaku. Publ Astron Soc Japan 59:35–51

    Google Scholar 

  • Thuillier G, Floyd L, Woods T (plus four authors) (2004) Solar irradiance reference spectrum. In: Geophysical Monograph 141: Solar variability and its effect on climate, American Geophysical Union, Washington DC, USA, pp. 171–194

    Google Scholar 

  • Title AM (2013) Michelson interferometers. ISSI SR-009:349–361

    Google Scholar 

  • Tiwari SC (2002) Relativity, entanglement and the physical reality of the photon. J Opt B Quantum Semiclass Opt 4:S39–S46

    Google Scholar 

  • Wang LJ, Kuzmich A, Dogariu A (2000) Gain-assisted superluminal light propagation. Nature 406:277–279

    Google Scholar 

  • White OR (1977) The solar output and its variations. Colorado Associated University Press, Boulder, USA

    Google Scholar 

  • Wild W (2013) Coherent far-infrared / submillimeter detectors. ISSI SR-009:543–564

    Google Scholar 

  • Wilhelm K, Curdt W, Marsch E (plus 13 authors) (1995) Some design and performance features of SUMER. Proc SPIE 2517:2–11

    Google Scholar 

  • Wilhelm K, Schühle U, Curdt W (plus four authors) (2002) Solar vacuum-ultraviolet radiometry with SUMER. ISSI SR-002:145–160

    Google Scholar 

  • Wilhelm K, Dwivedi BN, Marsch E, Feldman U (2004) Observations of the Sun at vacuum-ultraviolet wavelengths from space. Part I. Space Sci Rev 111:415–480

    Google Scholar 

  • Woods TN, Rottman G (2005) XUV photometer system (XPS): Solar variations during the SORCE mission. Sol Phys 230:375–387

    Google Scholar 

  • Woods TN, Eparvier FG (2006) Solar ultraviolet variability during the TIMED mission. Adv Space Res 37:219–224

    Google Scholar 

  • Woods TN, Tobiska WK, Rottman GJ, Worden JR (2000) Improved solar Lyman-α irradiance modeling from 1947 through 1999 based on UARS observations. J Geophys Res 105:27 195–27 216

    Google Scholar 

  • Zbinden H, Brendel J, Tittel W, Gisin N (2001) Experimental test of relativistic quantum state collapse with moving reference frames. J Phys A Math Gen 34:7103–7109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilhelm, K., Fröhlich, C. (2013). Photons — from source to detector. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics