Skip to main content

High-accuracy positioning: astrometry

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

The limiting accuracy for measuring the location of an optical image is set by diffraction and photon noise, i.e., by the dual wave–particle nature of light. A theoretical expression for the limiting accuracy is derived under idealized conditions and generalized to take into account more realistic circumstances, such as additive noise and finite pixel size. Its application is discussed in relation to different space-astrometry techniques including grid modulation, direct imaging, and interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson J, King IR (2000) Toward high-precision astrometry with WFPC2. I. Deriving an accurate point-spread function. Publ Astr Soc Pac 112:1360–1382

    Article  ADS  Google Scholar 

  • Anderson J, King IR (2003) An improved distortion solution for the Hubble Space Telescope’s WFPC2. Publ Astr Soc Pac 115:113–131

    Article  ADS  Google Scholar 

  • Anderson J, King IR (2006) PSFs, photometry, and astrometry for the ACS/WFC. Space Telescope Science Institute, Instrument Science Report ACS 2006-01

    Google Scholar 

  • Benedict GF, McArthur B, Nelan E (plus 11 authors) (1994) Astrometry with Hubble Space Telescope fine guidance sensor number 3: Position-mode stability and precision. Publ Astr Soc Pac 106:327–336

    Google Scholar 

  • Benedict GF, McArthur BE, Fredrick LW (plus 17 authors) (2003) Astrometry with the Hubble Space Telescope: A parallax of the central star of the Planetary Nebula NGC 6853. Astron J 126:2549–2556

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (7th ed.). Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Connes P (1979) Should we go to space for parallaxes? Astron Astrophys 71:L1–L4

    ADS  Google Scholar 

  • Falconi O (1964) Maximum sensitivities of optical direction and twist measuring instruments. J Opt Soc Am 54:1315–1320

    Article  ADS  Google Scholar 

  • Fomalont EB (2005) Radio astrometry: Present status and future. ASP Conf Ser 338:335–342

    ADS  Google Scholar 

  • Fruchter AS, Hook RN (2002) Drizzle: a method for the linear reconstruction of undersampled images. Publ Astr Soc Pac 114:144–152

    Article  ADS  Google Scholar 

  • Goudfrooij P, Bohlin RC, Maíz-Apellániz J, Kimble RA (2006) Empirical corrections for charge transfer inefficiency and associated centroid shifts for STIS CCD observations. Publ Astr Soc Pac 118:1455–1473

    Article  ADS  Google Scholar 

  • Gunn JE, Carr M, Rockosi C (plus 37 authors) (1998) The Sloan digital sky survey photometric camera. Astron J 116:3040–3081

    Google Scholar 

  • Howell SB (2000) Handbook of CCD astronomy. Cambridge: Cambridge University Press

    Google Scholar 

  • Janesick JR (2001) Scientific charge-coupled devices. SPIE monograph PM 83. Bellingham, WA: SPIE Optical Engineering Press

    Google Scholar 

  • Klioner SA (2003) A practical relativistic model for microarcsecond astrometry in space. Astron J 125:1580–1597

    Article  ADS  Google Scholar 

  • Kozhurina-Platais V, Goudfrooij, Puzia TH (2007) ACS/WFC: Differential CTE corrections for photometry and astronomy from non-drizzled images. Space Telescope Science Institute, Instrument Science Report ACS 2007-04

    Google Scholar 

  • Lindegren L (1978) Photoelectric astrometry — A comparison of methods for precise image location. IAU Coll 48: Modern Astrometry, pp 197–217

    Google Scholar 

  • Lindegren L (2005) The astrometric instrument of Gaia: Principles. ESA SP-576:29–34

    ADS  Google Scholar 

  • Lindegren L, Babusiaux C, Bailer-Jones C (plus ten authors) (2008) The Gaia mission: science, organization and present status. IAU Symp. No. 248, pp 217–223

    Google Scholar 

  • Meier DL, Folkner WM (2003) SIMsim: an end-to-end simulation of SIM. Proc SPIE 4852:131–142

    Article  ADS  Google Scholar 

  • Nemati B (2006) SIM PlanetQuest: status and recent progress. Proc SPIE 6268:62680Q-1–10

    Google Scholar 

  • Perryman MAC (1997) The Hipparcos and Tycho Catalogues. ESA SP-1200

    Google Scholar 

  • Perryman MAC (2005) Overview of the Gaia mission. ASP Conf Ser 338:3–14

    ADS  Google Scholar 

  • Perryman MAC (2009) Astronomical applications of astrometry: A review based on ten years of exploitation of the Hipparcos satellite data. Cambridge: Cambridge University Press

    Google Scholar 

  • Shao M (2006) Search for terrestrial planets with SIM PlanetQuest. Proc SPIE 6268:62681Z-1–6

    Google Scholar 

  • Shao M, Nemati B (2009) Sub-microarcsecond astrometry with SIM-Lite: A testbed-based performance assessment. Publ Astr Soc Pac 121:41–44

    Article  ADS  Google Scholar 

  • Stuart A, Ord JK, Arnold S (1998) Kendall’s Advanced Theory of Statistics, Volume 2A: Classical Inference and the Linear Model (6th ed.). London: Hodder Arnold

    Google Scholar 

  • Taff LG (1988) Gamma-ray burst astrometry. Astrophys J 326:1032–1035

    Article  ADS  Google Scholar 

  • Turon C, Robichon N (2006) Astrometric surveys. Mem Soc Astron Italiana 77:1073–1080

    ADS  Google Scholar 

  • Unwin SC, Shao M, Tanner AM (plus 33 authors) (2008) Taking the Measure of the Universe: Precision astrometry with SIM PlanetQuest. Publ Astr Soc Pac 120:38–88

    Google Scholar 

  • van Leeuwen F (2007) Hipparcos, the new reduction of the raw data. Astrophysics and Space Science Library Vol. 350

    Google Scholar 

  • Wall JV, Jenkins CR (2003) Practical statistics for astronomers. Princeton Series in Astrophysics. Cambridge: Cambridge University Press

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindegren, L. (2013). High-accuracy positioning: astrometry. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics