Skip to main content

Speciation in the Shadow of Recombination and Lateral Gene Transfer

  • Chapter
  • First Online:
Lateral Gene Transfer in Evolution

Abstract

Advances in population genetics and genomics driven by more efficient and affordable DNA sequencing and analyses have uncovered large variety in the patterns of microbial genetic diversity. The fact that genes can be horizontally transmitted at unexpectedly high rates within and between related asexually reproducing lineages radically changed our understanding of prokaryotic evolution and ecology. Consequently, we have had to change the view of species as monolithic discrete units and acknowledge that most data actually support much fuzzier distinctions. Here, we review population genetics, genomics, and experimental genetics findings that convey a complex picture of microbial speciation processes and highlight some underappreciated forces of microbial speciation including biogeography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10(7):472–482

    PubMed  CAS  Google Scholar 

  2. Boucher Y et al (2001) Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Mol Biol Evol 18(7):1378–1388

    Article  PubMed  CAS  Google Scholar 

  3. Bolhuis H et al (2010) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME J 4(1):121–130

    Article  PubMed  CAS  Google Scholar 

  4. Gophna U et al (2005) Evolutionary plasticity of methionine biosynthesis. Gene 355:48–57

    Article  PubMed  CAS  Google Scholar 

  5. Gophna U et al (2006) Complex histories of genes encoding 3-hydroxy-3-methylglutaryl-CoenzymeA reductase. Mol Biol Evol 23(1):168–178

    Article  PubMed  CAS  Google Scholar 

  6. Noll KM et al (2008) Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales. BMC Evol Biol 8:7

    Article  PubMed  Google Scholar 

  7. Sharon I et al (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461(7261):258–262

    Article  PubMed  CAS  Google Scholar 

  8. Zeidner G et al (2005) Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol 7(10):1505–1513

    Article  PubMed  CAS  Google Scholar 

  9. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2(5):376–381

    PubMed  CAS  Google Scholar 

  10. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  11. Gophna U, Ron EZ, Graur D (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151–163

    Article  PubMed  CAS  Google Scholar 

  12. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19(12):2226–2238

    Article  PubMed  CAS  Google Scholar 

  13. Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61(4):449–460

    Article  PubMed  Google Scholar 

  14. Achtman M et al (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96(24):14043–14048

    Article  PubMed  CAS  Google Scholar 

  15. Selander RK, Levin BR (1980) Genetic Diversity and Structure in Escherichia-coli Populations. Science 210(4469):545–547

    Article  PubMed  CAS  Google Scholar 

  16. Caugant DA et al (1987) Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern. J Bacteriol 169(6):2781–2792

    PubMed  CAS  Google Scholar 

  17. Cohan FM (2001) Bacterial species and speciation. Syst Biol 50(4):513–524

    Article  PubMed  CAS  Google Scholar 

  18. Polz MF et al (2006) Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc Lond B Biol Sci 361(1475):2009–2021

    Article  PubMed  Google Scholar 

  19. Ward DM et al (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos Trans R Soc Lond B Biol Sci 361(1475):1997–2008

    Article  PubMed  Google Scholar 

  20. Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos Trans R Soc Lond B Biol Sci 361(1475):1985–1996

    Article  PubMed  Google Scholar 

  21. Sikorski J, Nevo E (2005) Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel. Proc Natl Acad Sci U S A 102(44):15924–15929

    Article  PubMed  CAS  Google Scholar 

  22. Koeppel A et al (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A 105(7):2504–2509

    Article  PubMed  CAS  Google Scholar 

  23. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393(6684):464–467

    Article  PubMed  CAS  Google Scholar 

  24. Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1(3):271–277

    Article  PubMed  CAS  Google Scholar 

  25. Rocap G et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424(6952):1042–1047

    Article  PubMed  CAS  Google Scholar 

  26. Rocap G et al (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68(3):1180–1191

    Article  PubMed  CAS  Google Scholar 

  27. Zhaxybayeva O et al (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16(9):1099–1108

    Article  PubMed  CAS  Google Scholar 

  28. Hunt DE et al (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320(5879):1081–1085

    Article  PubMed  CAS  Google Scholar 

  29. Zurel D et al (2011) Composition and dynamics of the gill microbiota of an invasive Indo-Pacific oyster in the eastern Mediterranean Sea. Environ Microbiol 13(6):1467–1476

    Article  PubMed  Google Scholar 

  30. Shapiro BJ et al (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336(6077):48–51

    Article  PubMed  CAS  Google Scholar 

  31. Papke RT et al (2007) Searching for species in haloarchaea. Proc Natl Acad Sci U S A 104(35):14092–14097

    Article  PubMed  CAS  Google Scholar 

  32. Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315(5811):476–480

    Article  PubMed  CAS  Google Scholar 

  33. Vulic M et al (1997) Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 94(18):9763–9767

    Article  PubMed  CAS  Google Scholar 

  34. Majewski J et al (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182(4):1016–1023

    Article  PubMed  CAS  Google Scholar 

  35. Zawadzki P, Roberts MS, Cohan FM (1995) The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140(3):917–932

    PubMed  CAS  Google Scholar 

  36. Hanage WP et al (2006) Modelling bacterial speciation. Philos Trans R Soc B Bio Sci 361(1475):2039–2044

    Article  Google Scholar 

  37. Suerbaum S et al (2001) Allelic diversity and recombination in Campylobacter jejuni. J Bacteriol 183(8):2553–2559

    Article  PubMed  CAS  Google Scholar 

  38. Frandsen EV et al (2001) Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect Immun 69(7):4479–4485

    Article  PubMed  CAS  Google Scholar 

  39. Vinuesa P et al (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34(1):29–54

    Article  PubMed  CAS  Google Scholar 

  40. Lodders N, Stackebrandt E, Nubel U (2005) Frequent genetic recombination in natural populations of the marine cyanobacterium Microcoleus chthonoplastes. Environ Microbiol 7(3):434–442

    Article  PubMed  CAS  Google Scholar 

  41. Whitaker RJ, Grogan DW, Taylor JW (2005) Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol Biol Evol 22(12):2354–2361

    Article  PubMed  CAS  Google Scholar 

  42. Papke RT et al (2004) Frequent recombination in a saltern population of Halorubrum. Science 306(5703):1928–1929

    PubMed  CAS  Google Scholar 

  43. Vos M, Didelot X (2009) A comparison of homologous recombination rates in bacteria and archaea. ISME J 3(2):199–208

    Article  PubMed  CAS  Google Scholar 

  44. Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173(22):7257–7268

    PubMed  CAS  Google Scholar 

  45. Lan R, Reeves PR (2001) When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol 9(9):419–24

    Article  PubMed  CAS  Google Scholar 

  46. Mevarech M, Werczberger R (1985) Genetic transfer in Halobacterium volcanii. J Bacteriol 162(1):461–462

    PubMed  CAS  Google Scholar 

  47. Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104(3):207–214

    Article  PubMed  CAS  Google Scholar 

  48. Rosenshine I, Tchelet R, Mevarech M (1989) The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245(4924):1387–1389

    Article  PubMed  CAS  Google Scholar 

  49. Ortenberg RT, Mevarech RM (1999) Exchange system of the extremely halophilic archaeon Haloferax volcanii. In: Aharon A (Ed) Microbiology and biogeochemistry of hypersaline environments. CRC press. pp 331–338.

    Google Scholar 

  50. Naor A et al (2012) Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 22(15):1444–1448

    Article  PubMed  CAS  Google Scholar 

  51. Naor A, Gophna U (2012) Cell fusion and hybrids in Archaea: Prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered 4(3)

    Google Scholar 

  52. Tripepi M, Imam S, Pohlschroder M (2010) Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J Bacteriol 192(12):3093–3102

    Article  PubMed  CAS  Google Scholar 

  53. Breuert S et al (2006) Regulated polyploidy in halophilic archaea. PLoS One 1:e92

    Article  PubMed  Google Scholar 

  54. Tchelet R, Mevarech M (1994) Interspecies Genetic Transfer in Halophilic Archaebacteria. Syst Appl Microbiol 16(4):578–581

    Article  CAS  Google Scholar 

  55. Torreblanca M et al (1986) Classification of Non-Alkaliphilic Halobacteria Based on Numerical Taxonomy and Polar Lipid-Composition, and Description of Haloarcula Gen-Nov and Haloferax Gen-Nov. Syst Appl Microbiol 8(1–2):89–99

    Article  Google Scholar 

  56. Han J et al (2012) Complete Genome Sequence of the Metabolically Versatile Halophilic Archaeon Haloferax mediterranei, a Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Producer. J Bacteriol 194(16):4463–4464

    Article  PubMed  CAS  Google Scholar 

  57. Lopez-Garcia P et al (1995) Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei. J Bacteriol 177(5):1405–1408

    PubMed  CAS  Google Scholar 

  58. Papke RT (2009) A critique of prokaryotic species concepts. In: Gogarten JP, Olendzenski L (Ed) Horizontal gene transfer, M.B.G. Humana Press, Totowa

    Google Scholar 

  59. Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Harvard University Press, Cambridge

    Google Scholar 

  60. Guttman DS, Dykhuizen DE (1994) Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138(4):993–1003

    PubMed  CAS  Google Scholar 

  61. Smith JM, Feil EJ, Smith NH (2000) Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22(12): 1115–1122

    Article  PubMed  CAS  Google Scholar 

  62. Williams D, Gogarten JP, Papke RT (2012) Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol Evol 4(12):1223–1244

    Article  PubMed  CAS  Google Scholar 

  63. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638–644

    Article  PubMed  Google Scholar 

  64. Castenholz RW (1978) The biogeography of hot spring algae through enrichment cultures. Mitt Int Ver Limnol 21:296–315

    Google Scholar 

  65. Fulthorpe RR, Rhodes AN, Tiedje JM (1998) High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl Environ Microbiol 64(5):1620–1627

    PubMed  CAS  Google Scholar 

  66. Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48(3):293–303

    Article  PubMed  CAS  Google Scholar 

  67. Oh D et al (2010) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14(2):161–169

    Article  PubMed  Google Scholar 

  68. Zhaxybayeva O et al (2013) Cell sorting analysis of geographically separated hypersaline environments. Extremophiles 17(2):265–275

    Article  PubMed  Google Scholar 

  69. Narasingarao P et al (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6(1):81–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thane Papke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thane Papke, R., Naor, A., Gophna, U. (2013). Speciation in the Shadow of Recombination and Lateral Gene Transfer. In: Gophna, U. (eds) Lateral Gene Transfer in Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7780-8_15

Download citation

Publish with us

Policies and ethics