Skip to main content

Arrhythmogenesis, Heart Failure, and the Biophysics of Z-Band Protein Networks

  • Chapter
  • First Online:
Biophysics of the Failing Heart

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1289 Accesses

Abstract

Cardiac function is determined by exquisite and finely tuned electromechanical activity of each myocyte, which in partnership with neighboring cells achieves a synchronized contraction and relaxation of the ventricular chambers to attain proper blood flow into systemic circulation. The complex cellular scaffold of each cardiomyocytes, the cytoskeleton (see also Chaps. 6 and 10), has been recently shown to be tightly associated with proteins forming channels, pores, and pumps that allow ions to move in and out the cellular barrier, and across different cells to provide the appropriate electrical stimulus throughout the heart. Here we consider some recent understanding of the connection between a subset of the cytoskeleton, the Z-band, and representative ion channels involved in the development of cardiac failure and arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz, S. M., Duffy, J. Y., Pearl, J. M., & Nelson, D. P. (2001). Cellular and molecular aspects of myocardial dysfunction. Critical Care Medicine, 29, S214–S219.

    Article  Google Scholar 

  2. Vatta, M., & Ackerman, M. J. (2010). Genetics of heart failure and sudden death. Heart Failure Clinics, 6, 507–514.

    Article  Google Scholar 

  3. Gregorio, C. C., & Antin, P. B. (2000). To the heart of myofibril assembly. Trends in Cell Biology, 10, 355–362.

    Article  Google Scholar 

  4. Pyle, W. G., & Solaro, R. J. (2004). At the crossroads of myocardial signaling: The role of Z-discs in intracellular signaling and cardiac function. Circulation Research, 94, 296–305.

    Article  Google Scholar 

  5. Clark, K. A., McElhinny, A. S., Beckerle, M. C., & Gregorio, C. C. (2002). Striated muscle cytoarchitecture: An intricate web of form and function. Annual Review of Cell and Developmental Biology, 18, 637–706.

    Article  Google Scholar 

  6. Vigoreaux, J. O. (1994). The muscle Z band: Lessons in stress management. Journal of Muscle Research and Cell Motility, 15, 237–255.

    Google Scholar 

  7. Stewart, M. (1993). Intermediate filament structure and assembly. Current Opinion in Cell Biology, 5, 3–11.

    Article  Google Scholar 

  8. Burridge, K., & Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annual Review of Cell and Developmental Biology, 12, 463–518.

    Article  Google Scholar 

  9. Capetanaki, Y. (2002). Desmin cytoskeleton: A potential regulator of muscle mitochondrial behaviour and function. Trends in Cardiovascular Medicine, 12, 339–348.

    Article  Google Scholar 

  10. Sharp, W. W., Simpson, D. G., Borg, T. K., Samarel, A. M., & Terracio, L. (1997). Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. American Journal of Physiology, 273, H546–H556.

    Google Scholar 

  11. Straub, V., & Campbell, K. P. (1997). Muscular dystrophies and the dystrophin-glycoprotein complex. Current Opinion in Neurology, 10, 168–175.

    Article  Google Scholar 

  12. Amann, K. J., Guo, W. X. A., & Ervasti, J. M. (1999). Utrophin lacks the rod domain actin binding activity of dystrophin. Journal of Biological Chemistry, 274, 35375–35380.

    Article  Google Scholar 

  13. Rybakova, I. N., Humston, J. L., Sonnemann, K. J., & Ervasti, J. M. (2006). Dystrophin and utrophin bind actin through distinct modes of contact. Journal of Biological Chemistry, 281, 9996–10001.

    Article  Google Scholar 

  14. Kucera, J. P., Rohr, S., & Rudy, Y. (2002). Localization of sodium channels in intercalated disks modulates cardiac conduction. Circulation Research, 91, 1176–1182.

    Article  Google Scholar 

  15. Ribaux, P., Bleicher, F., Couble, M. L., Amsellem, J., Cohen, S. A., Berthier, C., et al. (2001). Voltage-gated sodium channel (SkM1) content in dystrophin-deficient muscle. Pflügers Archiv, 441, 746–755.

    Article  Google Scholar 

  16. Petitprez, S., Zmoos, A. F., Ogrodnik, J., Balse, E., Raad, N., El-Haou, S., et al. (2011). SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circulation Research, 108, 294–304.

    Article  Google Scholar 

  17. Rook, M. B., Evers, M. M., Vos, M. A., & Bierhuizen, M. F. (2012). Biology of cardiac sodium channel Nav1.5 expression. Cardiovascular Research, 93, 12–23.

    Article  Google Scholar 

  18. Ziane, R., Huang, H., Moghadaszadeh, B., Beggs, A. H., Levesque, G., & Chahine, M. (2010). Cell membrane expression of cardiac sodium channel Na(v)1.5 is modulated by alpha-actinin-2 interaction. Biochemistry, 49, 166–178.

    Article  Google Scholar 

  19. Mazzone, A., Strege, P. R., Tester, D. J., Bernard, C. E., Faulkner, G., De Giorgio, R., et al. (2008). A mutation in telethonin alters Nav1.5 function. Biological Chemistry, 283, 16537–16544.

    Article  Google Scholar 

  20. Furukawa, T., Ono, Y., Tsuchiya, H., Katayama, Y., Bang, M. L., Labeit, D., et al. (2001). Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. Journal of Molecular Biology, 313, 775–784.

    Article  Google Scholar 

  21. Faulkner, G., Pallavicini, A., Formentin, E., Comelli, A., Ievolella, C., Trevisan, S., et al. (1999). Zasp: A new z-band alternatively spliced pdz-motif protein. The Journal of Cell Biology, 146, 465–475.

    Article  Google Scholar 

  22. Klaavuniemi, T., Kelloniemi, A., & Ylänne, J. (2004). The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. Journal of Biological Chemistry, 279(25), 26402–26410.

    Article  Google Scholar 

  23. Li, Z., Ai, T., Samani, K., Xi, Y., Tzeng, H. P., Xie, M., et al. (2010). A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circulation. Arrhythmia and Electrophysiology, 3, 646–656.

    Article  ADS  Google Scholar 

  24. Xi, Y., Ai, T., De Lange, E., Li, Z., Wu, G., Brunelli, L., et al. (2012). Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction. Circulation. Arrhythmia and Electrophysiology, 5(5), 1017–1026. Epub 2012.

    Article  Google Scholar 

  25. Bucchi, A., Barbuti, A., Difrancesco, D., & Baruscotti, M. (2012). Funny current and cardiac rhythm: Insights from HCN knockout and transgenic mouse models. Frontiers in Physiology, 3, 240.

    Article  Google Scholar 

  26. Xi, Y., Wu, G., Yang, L., Han, K., Du, Y., Wang, T., et al. (2009). Increased late sodium currents are related to transcription of neuronal isoforms in a pressure-overload model. European Journal of Heart Failure, 11, 749–757.

    Article  Google Scholar 

  27. Oudit, G. Y., Kassiri, Z., Sah, R., Ramirez, R. J., Zobel, C., & Backx, P. H. (2001). The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. Journal of Molecular and Cellular Cardiology, 33, 851–872.

    Article  Google Scholar 

  28. Wu, J., Shimizu, W., Ding, W. G., Ohno, S., Toyoda, F., Itoh, H., et al. (2010). KCNE2 modulation of Kv4.3 current and its potential role in fatal rhythm disorders. Heart Rhythm, 7(2), 199–205.

    Article  Google Scholar 

  29. Giudicessi, J. R., Ye, D., Tester, D. J., Crotti, L., Mugione, A., Nesterenko, V. V., et al. (2011). Transient outward current (I(to)) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm, 8(7), 1024–1032.

    Article  Google Scholar 

  30. Deng, M. C., Ardehali, A., Shemin, R., Hickey, A., MacLellan, W. R., & Fonarow, G. (2011). Relative roles of heart transplantation and long-term mechanical circulatory support in contemporary management of advanced heart failure—A critical appraisal 10 years after REMATCH. European Journal of Cardio-Thoracic Surgery, 40(4), 781–782.

    Google Scholar 

  31. Lakdawala, N. K., Winterfield, J. R., & Funke, B. H. (2013). Dilated cardiomyopathy. Circulation. Arrhythmia and Electrophysiology, 6(1), 228–237.

    Article  Google Scholar 

  32. Siu, B. L., Niimura, H., Osborne, J. A., Fatkin, D., MacRae, C., Solomon, S., et al. (1999). Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation, 99(8), 1022–1026.

    Article  Google Scholar 

  33. Gerull, B., Gramlich, M., Atherton, J., McNabb, M., Trombitás, K., Sasse-Klaassen, S., et al. (2002). Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genetics, 30(2), 201–204.

    Article  Google Scholar 

  34. Herman D. S., Lam L., Taylor M. R., Wang L., Teekakirikul P., Christodoulou D., et al. (2012). Truncations of titin causing dilated cardiomyopathy. N Engl J Med, 366(7), 619–628.

    Article  Google Scholar 

  35. Maron, B. J., Maron, M. S., & Semsarian, C. (2012). Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. Journal of the American College of Cardiology, 60(8), 705–715.

    Article  Google Scholar 

  36. Baudenbacher, F., Schober, T., Pinto, J. R., Sidorov, V. Y., Hilliard, F., Solaro, R. J., et al. (2008). Myofilament calcium sensitization causes susceptibility to cardiac arrhythmia. The Journal of Clinical Investigation, 118, 3893–3903.

    Google Scholar 

  37. ter Keurs, H. E. (2012). The interaction of Ca2+ with sarcomeric proteins: Role in function and dysfunction of the heart. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H38–H50.

    Article  Google Scholar 

  38. Savio-Galimberti, E., Gollob, M. H., & Darbar, D. (2012). Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Frontiers in Pharmacology, 3, 124.

    Article  Google Scholar 

  39. Paul, M., Wichter, T., Fabritz, L., Waltenberger, J., Schulze-Bahr, E., & Kirchhof, P. (2012). Arrhythmogenic right ventricular cardiomyopathy: An update on pathophysiology, genetics, diagnosis, and risk stratification. Herzschrittmachertherapie & Elektrophysiologie, 23(3), 186–195.

    Article  Google Scholar 

  40. Vatta, M., Mohapatra, B., Jimenez, S., Sanchez, X., Faulkner, G., Perles, Z., et al. (2003). Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. Journal of the American College of Cardiology, 42(11), 2014–2027.

    Article  Google Scholar 

  41. Zhou, Q., Chu, P. H., Huang, C., Cheng, C. F., Martone, M. E., Knoll, G., et al. (2001). Ablation of cypher, a pdz-lim domain z-line protein, causes a severe form of congenital myopathy. The Journal of Cell Biology, 155, 605–612.

    Article  Google Scholar 

  42. Zheng, M., Cheng, H., Li, X., Zhang, J., Cui, L., Ouyang, K., et al. (2009). Cardiac-specific ablation of cypher leads to a severe form of dilated cardiomyopathy with premature death. Human Molecular Genetics, 18, 701–713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vatta, M., Solaro, R.J. (2013). Arrhythmogenesis, Heart Failure, and the Biophysics of Z-Band Protein Networks. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_9

Download citation

Publish with us

Policies and ethics