Skip to main content

Biophysics of Titin in Cardiac Health and Disease

  • Chapter
  • First Online:
Biophysics of the Failing Heart

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1307 Accesses

Abstract

Titin is a gigantic multifunctional filamentous protein that spans from the Z-disk to the M-band region of the cardiac sarcomere. The elastic I-band region of titin generates passive force during sarcomere stretch that plays important roles in maintaining the structural organization of the sarcomere and that contributes greatly to diastolic stiffness. Recent work has shown that to match hemodynamic demands the mechanical properties of titin can be finely tuned through differential expression of titin isoforms and phosphorylation of titin’s spring-like elements. Titin may also play a role in mechanically sensing sarcomere length changes due to its placement in the sarcomere and extensible, force-bearing I-band region. The precise ways in which titin behaves as a mechanosensor is not well established, but rapid progress is being made in our understanding of the various proteins involved in signaling pathways that interact with titin. Recent work also revealed mutations in the titin gene (TTN) as a major source of familial cardiomyopathies, including mutations in titin’s spring region linked to arrhythmogenic right ventricular dysplasia and mutations in titin’s A-band region responsible for ~30 % of dilated cardiomyopathy (DCM) cases. This chapter discusses the mechanical properties of titin and the role titin plays in cardiac health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furst, D. O., Osborn, M., Nave, R., & Weber, K. (1988). The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. The Journal of Cell Biology, 106(5), 1563–1572.

    Google Scholar 

  2. Labeit, S., & Kolmerer, B. (1995). Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science, 270(5234), 293–296.

    ADS  Google Scholar 

  3. Bang, M. L., et al. (2001). The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circulation Research, 89(11), 1065–1072.

    Google Scholar 

  4. Helmes, M., et al. (1999). Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: Titin is an adjustable spring. Circulation Research, 84(11), 1339–1352.

    ADS  Google Scholar 

  5. Horowits, R., & Podolsky, R. J. (1987). The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: Evidence for the role of titin filaments. The Journal of Cell Biology, 105(5), 2217–2223.

    Google Scholar 

  6. Granzier, H. L., & Irving, T. C. (1995). Passive tension in cardiac muscle: Contribution of collagen, titin, microtubules, and intermediate filaments. Biophysical Journal, 68(3), 1027–1044.

    ADS  Google Scholar 

  7. Chung, C. S., et al. (2011). Titin based viscosity in ventricular physiology: An integrative investigation of PEVK-actin interactions. Journal of Molecular and Cellular Cardiology, 51(3), 428–434.

    Google Scholar 

  8. Lahmers, S., Wu, Y., Call, D. R., Labeit, S., & Granzier, H. (2004). Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circulation Research, 94(4), 505–513.

    Google Scholar 

  9. Greaser, M. L., et al. (2005). Developmental changes in rat cardiac titin/connectin: Transitions in normal animals and in mutants with a delayed pattern of isoform transition. Journal of Muscle Research and Cell Motility, 26(6–8), 325–332.

    Google Scholar 

  10. Yamasaki, R., et al. (2002). Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circulation Research, 90(11), 1181–1188.

    Google Scholar 

  11. Kruger, M., et al. (2009). Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circulation Research, 104(1), 87–94.

    MathSciNet  ADS  Google Scholar 

  12. Ono, Y., et al. (2004). Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94/calpain 3. Journal of Biological Chemistry, 279(4), 2761–2771.

    Google Scholar 

  13. Guo, W., Bharmal, S. J., Esbona, K., & Greaser, M. L. (2010). Titin diversity—Alternative splicing gone wild. Journal of Biomedicine and Biotechnology, 2010, 753675.

    Google Scholar 

  14. Improta, S., Politou, A. S., & Pastore, A. (1996). Immunoglobulin-like modules from titin I-band: Extensible components of muscle elasticity. Structure, 4(3), 323–337.

    Google Scholar 

  15. Politou, A. S., Gautel, M., Pfuhl, M., Labeit, S., & Pastore, A. (1994). Immunoglobulin-type domains of titin: Same fold, different stability? Biochemistry, 33(15), 4730–4737.

    Google Scholar 

  16. Marino, M., et al. (2005). Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents. Journal of Muscle Research and Cell Motility, 26(6–8), 355–365.

    Google Scholar 

  17. Freiburg, A., et al. (2000). Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circulation Research, 86(11), 1114–1121.

    Google Scholar 

  18. Opitz, C. A., Leake, M. C., Makarenko, I., Benes, V., & Linke, W. A. (2004). Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circulation Research, 94(7), 967–975.

    Google Scholar 

  19. Guo, W., et al. (2012). RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nature Medicine, 18(5), 766–773.

    Google Scholar 

  20. Brauch, K. M., et al. (2009). Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. Journal of the American College of Cardiology, 54(10), 930–941.

    Google Scholar 

  21. Li, D., et al. (2010). Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clinical and Translational Science, 3(3), 90–97.

    Google Scholar 

  22. Cazorla, O., et al. (2000). Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circulation Research, 86(1), 59–67.

    Google Scholar 

  23. Irving, T., et al. (2011). Thick-filament strain and interfilament spacing in passive muscle: Effect of titin-based passive tension. Biophysical Journal, 100(6), 1499–1508.

    ADS  Google Scholar 

  24. Huxley, H. E., Stewart, A., Sosa, H., & Irving, T. (1994). X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophysical Journal, 67(6), 2411–2421.

    ADS  Google Scholar 

  25. Trombitas, K., Freiburg, A., Centner, T., Labeit, S., & Granzier, H. (1999). Molecular dissection of N2B cardiac titin’s extensibility. Biophysical Journal, 77(6), 3189–3196.

    ADS  Google Scholar 

  26. Trombitas, K., et al. (2000). Extensibility of isoforms of cardiac titin: Variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophysical Journal, 79(6), 3226–3234.

    ADS  Google Scholar 

  27. Radke, M. H., et al. (2007). Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3444–3449.

    ADS  Google Scholar 

  28. Ford, L. E., Huxley, A. F., & Simmons, R. M. (1977). Tension responses to sudden length change in stimulated frog muscle fibres near slack length. The Journal of Physiology, 269(2), 441–515.

    Google Scholar 

  29. Nedrud, J., Labeit, S., Gotthardt, M., & Granzier, H. (2011). Mechanics on myocardium deficient in the N2B region of titin: The cardiac-unique spring element improves efficiency of the cardiac cycle. Biophysical Journal, 101(6), 1385–1392.

    ADS  Google Scholar 

  30. Moroz, J. D., & Nelson, P. (1997). Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14418–14422.

    ADS  Google Scholar 

  31. Harpaz, Y., & Chothia, C. (1994). Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. Journal of Molecular Biology, 238(4), 528–539.

    Google Scholar 

  32. Pfuhl, M., & Pastore, A. (1995). Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: A new member of the I set. Structure, 3(4), 391–401.

    Google Scholar 

  33. von Castelmur, E., et al. (2008). A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1186–1191.

    ADS  Google Scholar 

  34. Mayans, O., Wuerges, J., Canela, S., Gautel, M., & Wilmanns, M. (2001). Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure, 9(4), 331–340.

    Google Scholar 

  35. Witt, C. C., et al. (1998). A survey of the primary structure and the interspecies conservation of I-band titin’s elastic elements in vertebrates. Journal of Structural Biology, 122(1–2), 206–215.

    Google Scholar 

  36. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., & Schulten, K. (1998). Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophysical Journal, 75(2), 662–671.

    ADS  Google Scholar 

  37. Lee, E. H., Hsin, J., von Castelmur, E., Mayans, O., & Schulten, K. (2010). Tertiary and secondary structure elasticity of a six-Ig titin chain. Biophysical Journal, 98(6), 1085–1095.

    ADS  Google Scholar 

  38. Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Marszalek, P. E., & Fernandez, J. M. (2000). Point mutations alter the mechanical stability of immunoglobulin modules. Nature Structural Biology, 7(12), 1117–1120.

    Google Scholar 

  39. Watanabe, K., Muhle-Goll, C., Kellermayer, M. S. Z., Labeit, S., & Granzier, H. (2002). Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segments. Journal of Structural Biology, 137(1–2), 248–258.

    Google Scholar 

  40. Carrion-Vazquez, M., et al. (1999). Mechanical and chemical unfolding of a single protein: A comparison. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3694–3699.

    ADS  Google Scholar 

  41. Zhu, Y., Bogomolovas, J., Labeit, S., & Granzier, H. (2009). Single molecule force spectroscopy of the cardiac titin N2B element: Effects of the molecular chaperone alphaB-crystallin with disease-causing mutations. Journal of Biological Chemistry, 284(20), 13914–13923.

    Google Scholar 

  42. Marszalek, P. E., et al. (1999). Mechanical unfolding intermediates in titin modules. Nature, 402(6757), 100–103.

    ADS  Google Scholar 

  43. Bell, G. I. (1978). Models for the specific adhesion of cells to cells. Science, 200(4342), 618–627.

    ADS  Google Scholar 

  44. Chung, C., & Granzier, H. (2011). Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. Journal of Molecular and Cellular Cardiology, 50(4), 731–739.

    Google Scholar 

  45. Fersht, A. (1999). Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding (pp. xxi, 631 p.). New York: W.H. Freeman.

    Google Scholar 

  46. Taylor, M., et al. (2011). Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation, 124, 876–885.

    Google Scholar 

  47. Anderson, B. R., Bogomolovas, J., Labeit, S., & Granzier, H. (2013). Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism. Journal of Biological Chemistry, 288(8), 5303–5315.

    Google Scholar 

  48. Herman, D. S., et al. (2012). Truncations of titin causing dilated cardiomyopathy. The New England Journal of Medicine, 366(7), 619–628.

    Google Scholar 

  49. Ma, K., Kan, L. S., & Wang, K. (2001). Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry, 40(12), 3427–3438.

    Google Scholar 

  50. Watanabe, K., et al. (2002). Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. Journal of Biological Chemistry, 277(13), 11549–11558.

    Google Scholar 

  51. Greaser, M. (2001). Identification of new repeating motifs in titin. Proteins, 43(2), 145–149.

    Google Scholar 

  52. Li, H., et al. (2002). Reverse engineering of the giant muscle protein titin. Nature, 418(6901), 998–1002.

    ADS  Google Scholar 

  53. Anderson, B. R., Bogomolovas, J., Labeit, S., & Granzier, H. (2010). The effects of PKCalpha phosphorylation on the extensibility of titin’s PEVK element. Journal of Structural Biology, 170(2), 270–277.

    Google Scholar 

  54. Linke, W. A., et al. (2002). PEVK domain of titin: An entropic spring with actin-binding properties. Journal of Structural Biology, 137(1–2), 194–205.

    Google Scholar 

  55. Leake, M. C., Grutzner, A., Kruger, M., & Linke, W. A. (2006). Mechanical properties of cardiac titin’s N2B-region by single-molecule atomic force spectroscopy. Journal of Structural Biology, 155(2), 263–272.

    Google Scholar 

  56. Fukuda, N., Wu, Y., Nair, P., & Granzier, H. L. (2005). Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. Journal of General Physiology, 125(3), 257–271.

    Google Scholar 

  57. Trombitas, K., Wu, Y., Labeit, D., Labeit, S., & Granzier, H. (2001). Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. American Journal of Physiology. Heart and Circulatory Physiology, 281(4), H1793–H1799.

    Google Scholar 

  58. Bell, S. P., et al. (2000). Alterations in the determinants of diastolic suction during pacing tachycardia. Circulation Research, 87(3), 235–240.

    Google Scholar 

  59. Wu, Y., et al. (2002). Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation, 106(11), 1384–1389.

    Google Scholar 

  60. Warren, C. M., Jordan, M. C., Roos, K. P., Krzesinski, P. R., & Greaser, M. L. (2003). Titin isoform expression in normal and hypertensive myocardium. Cardiovascular Research, 59(1), 86–94.

    Google Scholar 

  61. Cicogna, A. C., et al. (1999). Direct effects of colchicine on myocardial function: Studies in hypertrophied and failing spontaneously hypertensive rats. Hypertension, 33(1), 60–65.

    MathSciNet  Google Scholar 

  62. Conrad, C. H., et al. (1995). Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation, 91(1), 161–170.

    MathSciNet  Google Scholar 

  63. Neagoe, C., et al. (2002). Titin isoform switch in ischemic human heart disease. Circulation, 106(11), 1333–1341.

    Google Scholar 

  64. Hein, S., Kostin, S., Heling, A., Maeno, Y., & Schaper, J. (2000). The role of the cytoskeleton in heart failure. Cardiovascular Research, 45(2), 273–278.

    Google Scholar 

  65. Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacology and Therapeutics, 123(2), 255–278.

    ADS  Google Scholar 

  66. Nagueh, S. F., et al. (2004). Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation, 110(2), 155–162.

    Google Scholar 

  67. Solaro, R. J. (2008). Multiplex kinase signaling modifies cardiac function at the level of sarcomeric proteins. Journal of Biological Chemistry, 283(40), 26829–26833.

    Google Scholar 

  68. Molkentin, J. D., & Dorn, G. W. (2001). Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annual Review of Physiology, 63, 391–426.

    Google Scholar 

  69. Belin, R. J., et al. (2007). Augmented protein kinase C-alpha-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure. Circulation Research, 101(2), 195–204.

    Google Scholar 

  70. Hidalgo, C., et al. (2009). PKC phosphorylation of titin’s PEVK element: A novel and conserved pathway for modulating myocardial stiffness. Circulation Research, 105(7), 631–638. 617 p following 638.

    Google Scholar 

  71. Hudson, B. D., Hidalgo, C. G., Gotthardt, M., & Granzier, H. L. (2010). Excision of titin’s cardiac PEVK spring element abolishes PKCalpha-induced increases in myocardial stiffness. Journal of Molecular and Cellular Cardiology, 48(5), 972–978.

    Google Scholar 

  72. Kruger, M., & Linke, W. A. (2006). Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. Journal of Muscle Research and Cell Motility, 27(5–7), 435–444.

    Google Scholar 

  73. Raskin, A., et al. (2012). A novel mechanism involving four and a half lim domain protein-1 and extracellular-signal-regulated kinase-2 regulates titin phosphorylation and mechanics. Journal of Biological Chemistry, 287(35), 29273–29284.

    Google Scholar 

  74. Sheikh, F., et al. (2008). An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. Journal of Clinical Investigation, 118(12), 3870–3880.

    Google Scholar 

  75. Muslin, A. J. (2008). MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clinical Science, 115(7–8), 203–218.

    Google Scholar 

  76. Grutzner, A., et al. (2009). Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophysical Journal, 97(3), 825–834.

    ADS  Google Scholar 

  77. Grieve, D. J., & Shah, A. M. (2003). Oxidative stress in heart failure. More than just damage. European Heart Journal, 24(24), 2161–2163.

    Google Scholar 

  78. de Tombe, P. P., & ter Keurs, H. E. (1992). An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. The Journal of Physiology, 454, 619–642.

    Google Scholar 

  79. Bianco, P., et al. (2007). Interaction forces between F-Actin and titin PEVK domain measured with optical tweezers. Biophysical Journal, 93(6), 2102–2109.

    ADS  Google Scholar 

  80. Yamasaki, R., et al. (2001). Titin-actin interaction in mouse myocardium: Passive tension modulation and its regulation by calcium/S100A1. Biophysical Journal, 81(4), 2297–2313.

    ADS  Google Scholar 

  81. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C. (1990). Atomic structure of the actin: DNase I complex. Nature, 347(6288), 37–44.

    ADS  Google Scholar 

  82. Nagy, A., et al. (2004). Differential actin binding along the PEVK domain of skeletal muscle titin. Journal of Cell Science, 117(Pt 24), 5781–5789.

    Google Scholar 

  83. Irving, T. C., Li, Q., Williams, B. A., & Millman, B. M. (1998). Z/I and A-band lattice spacings in frog skeletal muscle: Effects of contraction and osmolarity. Journal of Muscle Research and Cell Motility, 19(7), 811–823.

    Google Scholar 

  84. Zou, P., et al. (2006). Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature, 439(7073), 229–233.

    ADS  Google Scholar 

  85. Gregorio, C. C., et al. (1998). The NH2 terminus of titin spans the Z-disc: Its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. The Journal of Cell Biology, 143(4), 1013–1027.

    Google Scholar 

  86. Lee, E. H., Gao, M., Pinotsis, N., Wilmanns, M., & Schulten, K. (2006). Mechanical strength of the titin Z1Z2-telethonin complex. Structure, 14(3), 497–509.

    Google Scholar 

  87. Arber, S., Halder, G., & Caroni, P. (1994). Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell, 79(2), 221–231.

    Google Scholar 

  88. Kong, Y., Flick, M. J., Kudla, A. J., & Konieczny, S. F. (1997). Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Molecular and Cellular Biology, 17(8), 4750–4760.

    Google Scholar 

  89. Knoll, R., et al. (2002). The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell, 111(7), 943–955.

    Google Scholar 

  90. Geier, C., et al. (2008). Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Human Molecular Genetics, 17(18), 2753–2765.

    Google Scholar 

  91. Bos, J. M., et al. (2006). Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Molecular Genetics and Metabolism, 88(1), 78–85.

    Google Scholar 

  92. Hayashi, T., et al. (2004). Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. Journal of the American College of Cardiology, 44(11), 2192–2201.

    Google Scholar 

  93. Lange, S., et al. (2002). Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. Journal of Cell Science, 115(Pt 24), 4925–4936.

    Google Scholar 

  94. Granzier, H. L., et al. (2009). Truncation of titin’s elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circulation Research, 105(6), 557–564.

    Google Scholar 

  95. Carpenter, B. K. (2005). Nonstatistical dynamics in thermal reactions of polyatomic molecules. Annual Review of Physical Chemistry, 56, 57–89.

    ADS  Google Scholar 

  96. Miller, M. K., et al. (2003). The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. Journal of Molecular Biology, 333(5), 951–964.

    Google Scholar 

  97. Kojic, S., et al. (2004). The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. Journal of Molecular Biology, 339(2), 313–325.

    Google Scholar 

  98. Mayans, O., et al. (1998). Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature, 395(6705), 863–869.

    ADS  Google Scholar 

  99. Puchner, E. M., et al. (2008). Mechanoenzymatics of titin kinase. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13385–13390.

    ADS  Google Scholar 

  100. Grater, F., Shen, J., Jiang, H., Gautel, M., & Grubmuller, H. (2005). Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophysical Journal, 88(2), 790–804.

    ADS  Google Scholar 

  101. Pawson, T., & Scott, J. D. (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science, 278(5346), 2075–2080.

    ADS  Google Scholar 

  102. Lange, S., et al. (2005). The kinase domain of titin controls muscle gene expression and protein turnover. Science, 308(5728), 1599–1603.

    ADS  Google Scholar 

  103. Gotthardt, M., et al. (2003). Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. Journal of Biological Chemistry, 278(8), 6059–6065.

    Google Scholar 

  104. Peng, J., et al. (2007). Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation, 115(6), 743–751.

    Google Scholar 

  105. McElhinny, A. S., Kakinuma, K., Sorimachi, H., Labeit, S., & Gregorio, C. C. (2002). Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. The Journal of Cell Biology, 157(1), 125–136.

    Google Scholar 

  106. Mrosek, M., et al. (2007). Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. The FASEB Journal, 21(7), 1383–1392.

    Google Scholar 

  107. Witt, S. H., Granzier, H., Witt, C. C., & Labeit, S. (2005). MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: Towards understanding MURF-dependent muscle ubiquitination. Journal of Molecular Biology, 350(4), 713–722.

    Google Scholar 

  108. Witt, C. C., et al. (2008). Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO Journal, 27(2), 350–360.

    Google Scholar 

  109. Maruyama, K. (1976). Connectin, an elastic protein from myofibrils. Journal of Biochemistry, 80(2), 405–407.

    MathSciNet  Google Scholar 

  110. Wang, K., McClure, J., & Tu, A. (1979). Titin: Major myofibrillar components of striated muscle. Proceedings of the National Academy of Sciences of the United States of America, 76(8), 3698–3702.

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH training grant GM084905 and an award from the American Heart Association 11PRE7370083 to B.A., and by NIH HL062881 to H.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk L. Granzier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anderson, B.R., Granzier, H.L. (2013). Biophysics of Titin in Cardiac Health and Disease. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7678-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7677-1

  • Online ISBN: 978-1-4614-7678-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics