Skip to main content

Grain Growth Kinetics During Microwave Sintering of the Nanocrystalline Titanium Nitride

  • Conference paper
  • First Online:
Nanomaterials Imaging Techniques, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

Microstructural evolution and grain growth kinetics of nanocrystalline titanium nitride powders were investigated, when being isothermally annealed using microwave and conventional sintering. The results show that, microwave sintering of nanocrystalline TiN results in fine microstructure ~220 nm, as compared to the conventional sintering 335 nm. Grain growth process during microwave sintering occurred mainly by mechanism of grain-boundary diffusion with an activation energy of 230 kJ mol−1, while in case of conventional sintering, the mechanism of volume diffusion was assumed with the activation energy of 390 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuzenkova MA, Kislyi PS (1971) Vacuum sintering of titanium nitride. Powder Metall Met Ceram 10:125–128

    Article  Google Scholar 

  2. Hosokawa M, Nogi K, Naito M, Yokoyama T (eds) (2007) Nanoparticle technology handbook. Elsevier, Amsterdam

    Google Scholar 

  3. Troitskii VN, Rakhmatullina AZ, Berestenko VI, Gurov SV (1983) Initial sintering temperature of ultrafine powders. Powder Metall Met Ceram 22:12–14

    Article  Google Scholar 

  4. Ragulya AV (2008) Consolidation of ceramic nanopowders. Adv Appl Ceram 107:118–134

    Article  Google Scholar 

  5. Themelin L, Desmaison-Brut M, Boncoeur M, Valin F (1988) Microstructure, mechanical properties and oxidation behaviour of hot-isostatic-pressed titanium nitride. L’Industrie Ceramique 828:426–433

    Google Scholar 

  6. Groza JR, Curtis JD, Kramer M (2000) Field-assisted sintering of nanocrystalline titanium nitride. J Am Ceram Soc 83:1281–1283

    Article  Google Scholar 

  7. Sherif El-Sekandarany M, Omori M, Konno TJ, Sumiyama K, Hirai T, Suzuki K (1998) Syntheses of full-density nanocrystalline titanium nitride compacts by plasma-activated sintering of mechanically reacted powder. Metall Mater Trans A 29(7):1973–1981

    Article  Google Scholar 

  8. Vaidhyanathan B, Agrawal DK, Roy R (2000) Novel synthesis of nitride powders by microwave-assisted combustion. J Mater Res 15:974–981

    Article  ADS  Google Scholar 

  9. Venkateswarlu K, Saurabh S, Rajinikanth V, Sahu RK, Ray AK (2010) Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering. J Mater Eng Perform 19:231–236

    Article  Google Scholar 

  10. Matsumoto T, Makino Y, Miyake S (2011) Synthesis of titanium-chromium nitride composites by millimeter-wave sintering. J Mater Sci 36:693–698

    Article  ADS  Google Scholar 

  11. Agrawal DK (1998) Microwave processing of ceramics. Curr Opin Solid State Mater Sci 3:480–485

    Article  ADS  Google Scholar 

  12. Binner J, Annapoorani K, Paul A, Santacruz I, Vaidhyanathan B (2008) Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. J Eur Ceram Soc 28:973–977

    Article  Google Scholar 

  13. Janney MA, Kimrey HD (1990) Microstructure evolution in microwave-sintered alumina. In: Bieninger J, Handwerker C (eds) Advances in sintering. American Ceramic Society, Westerville

    Google Scholar 

  14. Nightingale SA, Worner HK, Dunne DP (1997) Microstructural development during the microwave sintering of yttria-zirconia ceramics. J Am Ceram Soc 80:394–400

    Article  Google Scholar 

  15. Xu G, Lloyd IK, Carmel Y, Olorunyolemi T, Wilson OC Jr (2001) Microwave sintering of ZnO at ultra high heating rates. J Mater Res 16:2850–2858

    Article  ADS  Google Scholar 

  16. Pert E, Carmel Y, Birnboim A, Olorunyolemi T, Gershon D, Calame J, Lloyd IK, Wilson OC (2001) Temperature measurements during microwave processing: the significance of thermocouple effects. J Am Ceram Soc 84:1981–1986

    Article  Google Scholar 

  17. Ragulya AV, Skorokhod VV (2007) Consolidated nanostructured materials. Naukova Dumka, Kiev [in Russian]

    Google Scholar 

  18. Fang Y, Agrawal DK, Roy R (2003) Microwave sintering of nano-phase MgO, TiO2, and Cu metal powders. In: proceeding sintering, Penn State University, Pennsylvania, 15–17 Sep 2003

    Google Scholar 

  19. Gupta M, Leong W (2007) Microwaves and metals. Wiley, New York

    Book  Google Scholar 

  20. Chaim R, Shlayer A, Estournes C (2009) Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J Eur Ceram Soc 29:91–98

    Article  Google Scholar 

  21. Averback RS, Hofler HJ, Hahn H, Logas JC (1992) Sintering and grain growth in nanocrystalline ceramics. Nanostruct Mater 1:173–178

    Article  Google Scholar 

  22. Kuzenkova MA, Kislyi PS (1970) Sintering of titanium nitride in nitrogen. Powder Metall Ceram 9:379–382

    Google Scholar 

  23. Anglezio-Abautret F, Pellissier B, Miloche M, Eveno P (1991) Nitrogen self-diffusion in titanium nitride single crystals and polycrystals. J Eur Ceram Soc 8:299–304

    Article  Google Scholar 

  24. Demirskyi D, Ragulya A (2012) Low-temperature microwave sintering of TiN–SiC nanocomposites. J Mater Sci 47:3741–3745

    Article  ADS  Google Scholar 

  25. Vasylkiv O, Demirskyi D, Sakka Y, Ragulya A, Borodianska H (2012) Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering—a comparative study. J Nanosci Nanotechnol 12(6):4577–4582

    Article  Google Scholar 

  26. Janney MA, Kimrey HD, Schmidt MA, Kiggans J (1991) Grain growth in microwave-annealed alumina. J Am Ceram Soc 74:1675–1681

    Article  Google Scholar 

  27. Demirskyi D, Ragulya A, Agrawal D (2011) Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceram Int 37:505–512

    Article  Google Scholar 

  28. Demirskyi D, Agrawal D, Ragulya A (2010) Densification kinetics of powdered copper under single-mode and multimode microwave sintering. Mater Lett 64:1433–1436

    Article  Google Scholar 

Download references

Acknowledgments

The studies were financially supported by STCU #4259 and NAS of Ukraine via research grant “Sintering kinetics of Nanocrystalline Oxide Ceramics in the External Electric and Microwave Fields” which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Demirskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Demirskyi, D., Ragulya, A. (2013). Grain Growth Kinetics During Microwave Sintering of the Nanocrystalline Titanium Nitride. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics