Skip to main content

Next-Generation Sequencing for High-Throughput RNA Interference Screens

  • Chapter
  • First Online:
Next Generation Sequencing in Cancer Research

Abstract

Ribonucleic acid interference (RNAi) screening has emerged as an indispensable genetic research tool, allowing determination of phenotypic effects after silencing entire suites of genes. As the catalog of fully sequenced genomes and transcriptomes grows, production of small interfering/short-hairpin RNA libraries that target every gene in a particular cell, tissue, or organism is achievable, allowing high-throughput “genome-wide” RNAi screening. This technology has been embraced by cancer biologists and has been used to analyze a myriad of phenotypic effects of genetic loss of function in human cancers.

A basic RNAi screening scheme includes silencing of a panel of genes in a cell population, followed by identification of a phenotypic change (in cancer research, this might include cell death, cell invasion, sensitivity to therapeutics). Upon identification of cells exhibiting the phenotype of interest, it is necessary to determine which specific shRNAs are responsible. Previously, this process was laborious, requiring tedious DNA extraction, PCR amplification, and individual cloning and sequencing of PCR amplicons to determine the specific shRNA(s) harbored by cells.

With the advent of next-generation sequencing (NGS), identification of individual shRNAs harbored by cells has been revolutionized. NGS allows rapid and specific identification of shRNA oligomers present in the cell(s) of interest and requires minimal amounts of source material. This chapter will describe the use of NGS in RNAi screens with a focus on cancer biology and provide resources for those interested in pursuing NGS-powered RNAi screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carthew RW. Molecular biology. A new RNA dimension to genome control. Science. 2006;313(5785):305–6. Epub 2006/07/22.

    Article  PubMed  Google Scholar 

  2. Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev. 2005;19(5):517–29. Epub 2005/03/03.

    Article  PubMed  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. Epub 1998/03/05.

    Article  PubMed  CAS  Google Scholar 

  4. Boutros M, Ahringer J. The art and design of genetic screens: RNA interference. Nat Rev Genet. 2008;9(7):554–66. Epub 2008/06/04.

    Article  PubMed  CAS  Google Scholar 

  5. Cullen LM, Arndt GM. Genome-wide screening for gene function using RNAi in mammalian cells. Immunol Cell Biol. 2005;83(3):217–23. Epub 2005/05/10.

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs F, Boutros M. Cellular phenotyping by RNAi. Brief Funct Genomic Proteomic. 2006;5(1):52–6. Epub 2006/06/14.

    Article  PubMed  CAS  Google Scholar 

  7. Sims D, Mendes-Pereira AM, Frankum J, Burgess D, Cerone MA, Lombardelli C, et al. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol. 2011;12(10):R104. Epub 2011/10/25.

    Article  PubMed  CAS  Google Scholar 

  8. Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR, et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci U S A. 2008;105(26):9053–8. Epub 2008/06/25.

    Article  PubMed  Google Scholar 

  9. Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N, et al. Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat. 2012;135(1):79–91. Epub 2012/04/27.

    Article  PubMed  CAS  Google Scholar 

  10. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell. 2005;121(6):837–48. Epub 2005/06/18.

    Article  PubMed  CAS  Google Scholar 

  11. Lin G, Aranda V, Muthuswamy SK, Tonks NK. Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the “PTP-ome”. Genes Dev. 2011;25(13):1412–25. Epub 2011/07/05.

    Article  PubMed  CAS  Google Scholar 

  12. Campeau E, Gobeil S. RNA interference in mammals: behind the screen. Brief Funct Genomics. 2011;10(4):215–26. Epub 2011/07/28.

    Article  PubMed  CAS  Google Scholar 

  13. Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 2008;319(5863):617–20. Epub 2008/02/02.

    Article  PubMed  CAS  Google Scholar 

  14. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, et al. Cancer proliferation gene discovery through functional genomics. Science. 2008;319(5863):620–4. Epub 2008/02/02.

    Article  PubMed  CAS  Google Scholar 

  15. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137(5):835–48. Epub 2009/06/06.

    Article  PubMed  CAS  Google Scholar 

  16. Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ, et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol. 2011;29(1):79–83. Epub 2010/12/07.

    Article  PubMed  CAS  Google Scholar 

  17. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9. Epub 2004/08/27.

    Article  PubMed  CAS  Google Scholar 

  18. Brummelkamp TR, Bernards R. New tools for functional mammalian cancer genetics. Nat Rev Cancer. 2003;3(10):781–9. Epub 2003/10/23.

    Article  PubMed  CAS  Google Scholar 

  19. Brady T, Roth SL, Malani N, Wang GP, Berry CC, Leboulch P, et al. A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic Acids Res. 2011;39(11):e72. Epub 2011/03/19.

    Article  PubMed  CAS  Google Scholar 

  20. Ustek D, Sirma S, Gumus E, Arikan M, Cakiris A, Abaci N, et al. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology. Infect Genet Evol. 2012;12(7):1349–54. Epub 2012/05/23.

    Article  PubMed  CAS  Google Scholar 

  21. Duncavage EJ, Magrini V, Becker N, Armstrong JR, Demeter RT, Wylie T, et al. Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2011;13(3):325–33. Epub 2011/04/19.

    Article  PubMed  CAS  Google Scholar 

  22. Bassik MC, Lebbink RJ, Churchman LS, Ingolia NT, Patena W, LeProust EM, et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods. 2009;6(6):443–5. Epub 2009/05/19.

    Article  PubMed  CAS  Google Scholar 

  23. Sigoillot FD, Lyman S, Huckins JF, Adamson B, Chung E, Quattrochi B, et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods. 2012;9(4):363–6. Epub 2012/02/22.

    Article  PubMed  CAS  Google Scholar 

  24. Kaelin Jr WG. Molecular biology. Use and abuse of RNAi to study mammalian gene function. Science. 2012;337(6093):421–2. Epub 2012/07/28.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby M. Ward Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ward, T.M., Jegg, AM., Iorns, E. (2013). Next-Generation Sequencing for High-Throughput RNA Interference Screens. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7645-0_14

Download citation

Publish with us

Policies and ethics