Skip to main content

The Evolution of High-Throughput Sequencing Technologies: From Sanger to Single-Molecule Sequencing

  • Chapter
  • First Online:
Next Generation Sequencing in Cancer Research
  • 3877 Accesses

Abstract

High-throughput sequencing technologies have been advancing rapidly over the last few years, transitioning from the first-generation Sanger sequencing to fourth generation. Each of the new generation sequencing technologies is characterized by new features. In contrast to Sanger sequencing, next-generation sequencing technologies (including the bench-top platforms) are characterized by their ability to perform massively parallel sequencing of up to hundred millions of sequence reads. This has significantly increased the throughput of the sequencing data by several orders of magnitude compared to Sanger sequencing; more importantly, it has also reduced the cost of sequencing quite substantially. These advances have made sequencing of the entire human diploid genome and other large-scale omics studies both technically feasible and affordable, which was unachievable using Sanger sequencing. In addition, the sequencing of an entire human genome can be completed within weeks or days, which was unimaginable only a few years ago when the Human Genome Project was completed. This chapter reviews the technologies of these high-throughput sequencing platforms and discusses the evolution of these technologies over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45. Epub 2008/10/11.

    Article  PubMed  CAS  Google Scholar 

  2. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46. Epub 2009/12/10.

    Article  PubMed  CAS  Google Scholar 

  3. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40. Epub 2010/09/23.

    Article  PubMed  CAS  Google Scholar 

  4. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. Epub 2008/11/19.

    Article  PubMed  CAS  Google Scholar 

  5. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80. Epub 2009/09/09.

    Article  PubMed  CAS  Google Scholar 

  6. Hirst M, Marra MA. Next generation sequencing based approaches to epigenomics. Brief Funct Genomics. 2010;9(5–6):455–65. Epub 2011/01/27.

    PubMed  CAS  Google Scholar 

  7. Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet. 2010;11(7):476–86. Epub 2010/06/10.

    PubMed  CAS  Google Scholar 

  8. Ku CS, Naidoo N, Wu M, Soong R. Studying the epigenome using next generation sequencing. J Med Genet. 2011;48(11):721–30. Epub 2011/08/10.

    Article  PubMed  CAS  Google Scholar 

  9. Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics. 2011;5(6):577–622. Epub 2011/12/14.

    Article  PubMed  CAS  Google Scholar 

  10. Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AM, et al. Cancer genomics: technology, discovery, and translation. J Clin Oncol. 2012;30(6):647–60. Epub 2012/01/25.

    Article  PubMed  Google Scholar 

  11. Dixon-Salazar TJ, Silhavy JL, Udpa N, Schroth J, Bielas S, Schaffer AE, et al. Exome sequencing can improve diagnosis and alter patient management. Science translational medicine. 2012;4(138):138ra78. Epub 2012/06/16.

    Article  PubMed  Google Scholar 

  12. Lyon GJ, Wang K. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress. Genome Med. 2012;4(7):58. Epub 2012/07/27.

    Article  PubMed  Google Scholar 

  13. Werner T. Next generation sequencing in functional genomics. Brief Bioinform. 2010;11(5):499–511. Epub 2010/05/27.

    Article  PubMed  CAS  Google Scholar 

  14. Hey Y, Pepper SD. Interesting times for microarray expression profiling. Brief Funct Genomic Proteomic. 2009;8(3):170–3. Epub 2009/05/29.

    Article  PubMed  CAS  Google Scholar 

  15. Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic. 2009;8(3):174–83. Epub 2009/06/19.

    Article  PubMed  CAS  Google Scholar 

  16. Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet. 2007;39 Suppl 7:S16–21. Epub 2007/09/05.

    Article  PubMed  CAS  Google Scholar 

  17. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12(5):363–76. Epub 2011/03/02.

    Article  PubMed  CAS  Google Scholar 

  18. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54. Epub 2006/11/24.

    Article  PubMed  CAS  Google Scholar 

  19. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008;40(10):1166–74. Epub 2008/09/09.

    Article  PubMed  CAS  Google Scholar 

  20. Ku CS, Pawitan Y, Sim X, Ong RT, Seielstad M, Lee EJ, et al. Genomic copy number variations in three Southeast Asian populations. Hum Mutat. 2010;31(7):851–7. Epub 2010/05/28.

    Article  PubMed  CAS  Google Scholar 

  21. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318(5849):420–6. Epub 2007/09/29.

    Article  PubMed  CAS  Google Scholar 

  22. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009;19(9):1586–92. Epub 2009/08/07.

    Article  PubMed  CAS  Google Scholar 

  23. Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6 Suppl 11:S13–20. Epub 2009/11/03.

    Article  PubMed  CAS  Google Scholar 

  24. Xi R, Kim TM, Park PJ. Detecting structural variations in the human genome using next generation sequencing. Brief Funct Genomics. 2010;9(5–6):405–15. Epub 2011/01/11.

    PubMed  CAS  Google Scholar 

  25. Bamshad MJ, Shendure JA, Valle D, Hamosh A, Lupski JR, Gibbs RA, et al. The Centers for Mendelian Genomics: a new large-scale initiative to identify the genes underlying rare Mendelian conditions. Am J Med Genet A. 2012;158A(7):1523–5. Epub 2012/05/26.

    Article  PubMed  Google Scholar 

  26. Mardis ER. A decade’s perspective on DNA sequencing technology. Nature. 2011;470(7333):198–203. Epub 2011/02/11.

    Article  PubMed  CAS  Google Scholar 

  27. Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470(7333):187–97. Epub 2011/02/11.

    Article  PubMed  CAS  Google Scholar 

  28. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11(10):685–96. Epub 2010/09/18.

    Article  PubMed  CAS  Google Scholar 

  29. Roukos DH, Ku CS. Clinical cancer genome and precision medicine. Ann Surg Oncol. 2012;19(12):3646–50. Epub 2012/08/02.

    Article  PubMed  Google Scholar 

  30. Ku CS, Naidoo N, Pawitan Y. Revisiting Mendelian disorders through exome sequencing. Hum Genet. 2011;129(4):351–70. Epub 2011/02/19.

    Article  PubMed  Google Scholar 

  31. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55. Epub 2011/09/29.

    Article  PubMed  CAS  Google Scholar 

  32. Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, et al. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry. 2013;18(2):141–53. Epub 2012/05/30.

    Article  PubMed  CAS  Google Scholar 

  33. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13(8):565–75. Epub 2012/07/19.

    Article  PubMed  CAS  Google Scholar 

  34. Ku CS, Cooper DN, Polychronakos C, Naidoo N, Wu M, Soong R. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol. 2012;71(1):5–14. Epub 2012/01/26.

    Article  PubMed  CAS  Google Scholar 

  35. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(28):12629–33. Epub 2010/07/10.

    Article  PubMed  CAS  Google Scholar 

  36. Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, et al. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14(4):357–66. Epub 2012/06/05.

    Article  PubMed  CAS  Google Scholar 

  37. Mertes F, Elsharawy A, Sauer S, van Helvoort JM, van der Zaag PJ, Franke A, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics. 2011;10(6):374–86. Epub 2011/11/29.

    Article  PubMed  CAS  Google Scholar 

  38. Jones MA, Bhide S, Chin E, Ng BG, Rhodenizer D, Zhang VW, et al. Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation. Genet Med. 2011;13(11):921–32. Epub 2011/08/04.

    Article  PubMed  CAS  Google Scholar 

  39. Berg JS, Evans JP, Leigh MW, Omran H, Bizon C, Mane K, et al. Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: implications for application to clinical testing. Genet Med. 2011;13(3):218–29. Epub 2011/01/29.

    Article  PubMed  CAS  Google Scholar 

  40. Hoischen A, Gilissen C, Arts P, Wieskamp N, van der Vliet W, Vermeer S, et al. Massively parallel sequencing of ataxia genes after array-based enrichment. Hum Mutat. 2010;31(4):494–9. Epub 2010/02/13.

    Article  PubMed  Google Scholar 

  41. Ku CS, Wu M, Cooper DN, Naidoo N, Pawitan Y, Pang B, et al. Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis. Expert Rev Mol Diagn. 2012;12(2):159–73. Epub 2012/03/01.

    Article  PubMed  CAS  Google Scholar 

  42. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–9. Epub 2012/04/24.

    Article  PubMed  CAS  Google Scholar 

  43. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8. Epub 2008/11/22.

    Article  PubMed  CAS  Google Scholar 

  44. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320(5872):106–9. Epub 2008/04/05.

    Article  PubMed  CAS  Google Scholar 

  45. Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW, et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods. 2009;6(8):593–5. Epub 2009/07/22.

    Article  PubMed  CAS  Google Scholar 

  46. Thompson JF, Milos PM. The properties and applications of single-molecule DNA sequencing. Genome Biol. 2011;12(2):217. Epub 2011/02/26.

    PubMed  CAS  Google Scholar 

  47. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52. Epub 2011/07/22.

    Article  PubMed  CAS  Google Scholar 

  48. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26(10):1146–53. Epub 2008/10/11.

    Article  PubMed  CAS  Google Scholar 

  49. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265(5596):687–95. Epub 1977/02/24.

    Article  PubMed  CAS  Google Scholar 

  50. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45. Epub 2004/10/22.

    Article  Google Scholar 

  51. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42(9):790–3. Epub 2010/08/17.

    Article  PubMed  CAS  Google Scholar 

  52. Droege M, Hill B. The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol. 2008;136(1–2):3–10. Epub 2008/07/12.

    Article  PubMed  CAS  Google Scholar 

  53. Mardis ER. Anticipating the 1,000 dollar genome. Genome Biol. 2006;7(7):112. Epub 2007/01/17.

    Article  PubMed  Google Scholar 

  54. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364. Epub 2012/07/26.

    PubMed  Google Scholar 

  55. Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet. 2009;85(2):142–54. Epub 2009/08/15.

    Article  PubMed  CAS  Google Scholar 

  56. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872–6. Epub 2008/04/19.

    Article  PubMed  CAS  Google Scholar 

  57. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, et al. The diploid genome sequence of an Asian individual. Nature. 2008;456(7218):60–5. Epub 2008/11/07.

    Article  PubMed  CAS  Google Scholar 

  58. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9. Epub 2008/11/07.

    Article  PubMed  CAS  Google Scholar 

  59. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5(10):e254. Epub 2007/09/07.

    Article  PubMed  Google Scholar 

  60. Wong KM, Hudson TJ, McPherson JD. Unraveling the genetics of cancer: genome sequencing and beyond. Annu Rev Genomics Hum Genet. 2011;12:407–30. Epub 2011/06/07.

    Article  PubMed  CAS  Google Scholar 

  61. Mardis ER. Next-generation DNA, sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402. Epub 2008/06/26.

    Article  PubMed  CAS  Google Scholar 

  62. Strausberg RL, Levy S, Rogers YH. Emerging DNA sequencing technologies for human genomic medicine. Drug Discov Today. 2008;13(13–14):569–77. Epub 2008/07/05.

    Article  PubMed  CAS  Google Scholar 

  63. Ansorge WJ. Next-generation DNA, sequencing techniques. New Biotechnol. 2009;25(4):195–203. Epub 2009/05/12.

    Article  CAS  Google Scholar 

  64. Robison K. Application of second-generation sequencing to cancer genomics. Brief Bioinform. 2010;11(5):524–34. Epub 2010/04/30.

    Article  PubMed  CAS  Google Scholar 

  65. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109(36):14508–13. Epub 2012/08/03.

    Article  PubMed  CAS  Google Scholar 

  66. Paszkiewicz K, Studholme DJ. De novo assembly of short sequence reads. Brief Bioinform. 2010;11(5):457–72. Epub 2010/08/21.

    Article  PubMed  CAS  Google Scholar 

  67. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30(7):693–700. Epub 2012/07/04.

    Article  PubMed  CAS  Google Scholar 

  68. Li Y, Wang J. Faster human genome sequencing. Nat Biotechnol. 2009;27(9):820–1. Epub 2009/09/11.

    Article  PubMed  CAS  Google Scholar 

  69. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62. Epub 2010/12/22.

    Article  PubMed  Google Scholar 

  70. Efcavitch JW, Thompson JF. Single-molecule DNA analysis. Annu Rev Anal Chem. 2010;3:109–28. Epub 2010/07/20.

    Article  CAS  Google Scholar 

  71. Milos PM. Emergence of single-molecule sequencing and potential for molecular diagnostic applications. Expert Rev Mol Diagn. 2009;9(7):659–66. Epub 2009/10/13.

    Article  PubMed  CAS  Google Scholar 

  72. Pushkarev D, Neff NF, Quake SR. Single-molecule sequencing of an individual human genome. Nat Biotechnol. 2009;27(9):847–50. Epub 2009/08/12.

    Article  PubMed  CAS  Google Scholar 

  73. Goren A, Ozsolak F, Shoresh N, Ku M, Adli M, Hart C, et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods. 2010;7(1):47–9. Epub 2009/12/01.

    Article  PubMed  CAS  Google Scholar 

  74. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473(7347):394–7. Epub 2011/05/10.

    Article  PubMed  CAS  Google Scholar 

  75. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, et al. Direct RNA sequencing. Nature. 2009;461(7265):814–8. Epub 2009/09/25.

    Article  PubMed  CAS  Google Scholar 

  76. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5. Epub 2010/05/11.

    Article  PubMed  CAS  Google Scholar 

  77. Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW, et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods. 2012;9(1):75–7. Epub 2011/11/22.

    Article  CAS  Google Scholar 

  78. Carneiro MO, Russ C, Ross MG, Gabriel S, Nusbaum C, Depristo MA. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics. 2012;13(1):375. Epub 2012/08/07.

    Article  PubMed  CAS  Google Scholar 

  79. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327(5961):78–81. Epub 2009/11/07.

    Article  PubMed  CAS  Google Scholar 

  80. Horner DS, Pavesi G, Castrignano T, De Meo PD, Liuni S, Sammeth M, et al. Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform. 2010;11(2):181–97. Epub 2009/10/30.

    Article  PubMed  CAS  Google Scholar 

  81. Huss M. Introduction into the analysis of high-throughput-sequencing based epigenome data. Brief Bioinform. 2010;11(5):512–23. Epub 2010/05/12.

    Article  PubMed  CAS  Google Scholar 

  82. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8. Epub 2011/04/12.

    Article  PubMed  CAS  Google Scholar 

  83. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 2010;11(5):473–83. Epub 2010/05/13.

    Article  PubMed  CAS  Google Scholar 

  84. Ledergerber C, Dessimoz C. Base-calling for next-generation sequencing platforms. Brief Bioinform. 2011;12(5):489–97. Epub 2011/01/20.

    Article  PubMed  Google Scholar 

  85. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012;13(9):667–72.

    Article  PubMed  CAS  Google Scholar 

  86. Kedes L, Liu ET. The Archon Genomics X PRIZE for whole human genome sequencing. Nat Genet. 2010;42(11):917–8. Epub 2010/10/29.

    Article  PubMed  CAS  Google Scholar 

  87. Kedes L, Campany G. The new date, new format, new goals and new sponsor of the Archon Genomics X PRIZE competition. Nat Genet. 2011;43(11):1055–8. Epub 2011/10/28.

    Article  PubMed  CAS  Google Scholar 

Download references

Financial and Competing Interests Disclosure

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee-Seng Ku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ku, CS., Pawitan, Y., Wu, M., Roukos, D.H., Cooper, D.N. (2013). The Evolution of High-Throughput Sequencing Technologies: From Sanger to Single-Molecule Sequencing. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7645-0_1

Download citation

Publish with us

Policies and ethics