Skip to main content

New Demiclosedness Principles for (Firmly) Nonexpansive Operators

  • Conference paper
  • First Online:
Computational and Analytical Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 50))

Abstract

The demiclosedness principle is one of the key tools in nonlinear analysis and fixed point theory. In this note, this principle is extended and made more flexible by two mutually orthogonal affine subspaces. Versions for finitely many (firmly) nonexpansive operators are presented. As an application, a simple proof of the weak convergence of the Douglas-Rachford splitting algorithm is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauschke, H.H.: A note on the paper by Eckstein and Svaiter on general projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48, 2513–2515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  3. Borwein, J.M., Sims, B.: The Douglas-Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, vol. 49, pp. 93–109. Springer, New York (2011)

    Chapter  Google Scholar 

  4. Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. Elsevier, New York (1973)

    MATH  Google Scholar 

  6. Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660–665 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, New York (2008)

    Google Scholar 

  9. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 115–152. Elsevier, New York (2001)

    Chapter  Google Scholar 

  10. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Combettes, P.L., Svaiter, B.F.: Asymptotic behavior of alternating-direction method of multipliers (2011, preprint)

    Google Scholar 

  13. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eckstein, J., Ferris, M.C.: Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. Inform. J. Comput. 10, 218–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  16. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  17. Lawrence, J., Spingarn, J.E.: On fixed points of nonexpansive piecewise isometric mappings. Proc. London Math. Soc. 55, 605–624 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Minty, G.J.: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J.29, 341–346 (1962)

    Google Scholar 

  20. Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  21. Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998)

    Google Scholar 

  22. Simons, S.: From Hahn-Banach to Monotonicity. Springer, New York (2008)

    MATH  Google Scholar 

  23. Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49, 280–287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge (2002)

    Book  MATH  Google Scholar 

  25. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I. Projections on convex sets. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–341. Academic Press, New York (1971)

    Google Scholar 

Download references

Acknowledgements

HHB thanks Patrick Combettes and Jonathan Eckstein for their pertinent comments. HHB was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke .

Editor information

Editors and Affiliations

Additional information

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Communicated By Michel Théra.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Bauschke, H.H. (2013). New Demiclosedness Principles for (Firmly) Nonexpansive Operators. In: Bailey, D., et al. Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7621-4_2

Download citation

Publish with us

Policies and ethics