Skip to main content

The Uranium–Hydrogen Binary System

  • Chapter
  • First Online:
Uranium Processing and Properties

Abstract

Gaseous hydrogen (H2) dissolves in uranium metal (U) and subsequently precipitates as uranium hydride (UH3). Near ambient temperature, this process results in destructive, pitting corrosion. At elevated temperatures dissolved hydrogen permeates the uranium metal and precipitates as UH3 upon cooling to lower temperatures. Near ambient temperatures, trace amounts of UH3 reduce the tensile ductility of U and trace amounts of oxidizing species in H2 and on the U surface impede the reaction remarkably. In this chapter the phase relationships and kinetic processes describing the pure binary system are reviewed. Ternary processes involving oxygen are addressed in Chap. 7, and U alloys with other metals are not addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sieverts A, Bergner E (1912) Versuche uber die Loslichkeit von Argon und Helium in festen and flussigen Metallen. Ber Deut Chem Ges 45:2576–2583

    Article  Google Scholar 

  2. Driggs FH (1931) United States Patent 1,835,024

    Google Scholar 

  3. Spedding H, Newton AS, Warf JC, Johnson O, Nottdorf RW, Johns IB, Deane AH (1949) Uranium Hydride I. Nucleonics 4:4–9

    Google Scholar 

  4. Newton AS, Warf JC, Spedding FH, Johnson O, Johns IB, Nottdorf RW, Ayres JA, Fisher RW, Kant A (1949) Uranium Hydride II. Nucleonics 4:17–25

    Google Scholar 

  5. Warf JC (1949) Chemical properties of uranium hydride. USAEC Report AECD 2997, Iowa State College

    Google Scholar 

  6. Svec HJ, Duke FR (1950) USAEC Report ISC-105, Ames Laboratory

    Google Scholar 

  7. Katz JJ, Rabinowitch E (1951) The chemistry of uranium, Chapter 8. McGraw-Hill, New York, pp 183–213

  8. Libowitz GG (1968) Metal hydrides, Chapter 11. Academic, New York, pp 490–544

    Google Scholar 

  9. Inouye H, Schaffhauser SC (1969) Low temperature ductility and hydrogen embrittlement of uranium—a literature review. ORNL-TM-2563

    Google Scholar 

  10. Condon JB, Larson EA (1973) Kinetics of the uranium-hydrogen system. J Chem Phys 59:855–865

    Article  Google Scholar 

  11. Condon JB (1975) Calculated vs. experimental hydrogen reaction rates with uranium. J Phys Chem 79:392–396

    Article  Google Scholar 

  12. Powell GL (1979) The solubility of hydrogen and deuterium in body-centered-cubic uranium alloys. J Phys Chem 83:605–613

    Article  Google Scholar 

  13. Powell GL (1982) Internal hydrogen embrittlement in uranium alloys. In: Jessen NC (ed) Metallurgical technology of uranium and uranium alloys, vol 3. American Society for Metals, Metals Park, OH, pp 877–899

    Google Scholar 

  14. Powell GL (1976) Solubility of hydrogen and deuterium in a uranium-molybdenum alloy. J Phys Chem 80:375–381

    Article  Google Scholar 

  15. Lässer R, Powell GL (1986) The solubility of H, D, and T in Pd at low concentrations. Phys Rev B 34:578–586

    Article  Google Scholar 

  16. Mallette MW, Trzeciak MJ (1958) Hydrogen uranium relationships. Am Soc Metals Trans Q 50:981–993

    Google Scholar 

  17. Davis WD (1956) Solubility, determination, diffusion and mechanical effects of hydrogen in uranium. Knowles Atomic Power Laboratory, ASAEC Report KAPL-1548

    Google Scholar 

  18. Libowitz GG, Gibbs TRP Jr (1957) High pressure dissociation studies of the uranium hydrogen system. J Phys Chem 61:793

    Article  Google Scholar 

  19. Condon JB (1980) Standard Gibbs energy and standard enthalpy of formation of UH3 from 450 to 750 kelvin. J Chem Thermodyn 12:1069–1078

    Article  Google Scholar 

  20. Condon JB, Strehlow RA, Powell GL (1971) An instrument for measuring the hydrogen content in metals. Anal Chem 43:1448–1452

    Article  Google Scholar 

  21. Powell GL (1972) Mass spectrographic determination of hydrogen thermally evolved from tungsten-nickel-iron alloys. Anal Chem 44:2357–2361

    Article  Google Scholar 

  22. Powell GL, Condon JB (1973) Mass-spectrometric determination of hydrogen thermally evolve from uranium and uranium alloys. Anal Chem 45:2349–2354

    Article  Google Scholar 

  23. Powell GL, Harper WL, Kirkpatrick JR (1991) The kinetics of the hydriding of uranium metal. J Less Common Metals 172–174:116–123

    Article  Google Scholar 

  24. Wicke E, Otto K (1962) The uranium hydrogen system and the kinetics of hydride formation. Z Phys Chem (Frankfort) 31:222–248

    Article  Google Scholar 

  25. Spooner S, Bullock JS, Bridges RL, Powell GL, Ludka GM, Barker J (2003) SANS measurements of hydrides in uranium. In: Moody NR, Thompson AW, Ricker RE, Was GW, Jones RH (eds) Hydrogen effects on material behavior and corrosion deformation interactions. TMS (The Minerals, Metals, and Materials Society), Warrendale, PA

    Google Scholar 

  26. Powell GL, Condon JB (1976) Hydrogen in uranium alloys. In: Burke JJ, Colling DA, Corum AE, Greenspan J (eds) Physical metallurgy of uranium alloys, Chapter 11. Brookhill Publishing Co., Chestnut Hill, MA

    Google Scholar 

  27. Powell GL, Thompson KA (1990) Hydrogen embrittlement in lean uranium alloys. In: Moody NR, Thompson AW (eds) Hydrogen effects on material behavior. The Minerals, Metals & Materials Society, Warrendale, PA, pp 765–773

    Google Scholar 

  28. Powel GL (1996) The relationship between strain rate, hydrogen content, and tensile ductility of uranium. In: Moody NR, Thompson AW (eds) Hydrogen effects on material behavior. The Minerals, Metals & Materials Society, Warrendale, PA, pp 355–361

    Google Scholar 

  29. Teter DR, Hanrahan RJ Jr, Wetteland CJ (2003) Uranium hydride nucleation kinetics: effects of oxide thickness and vacuum outgassing. In: Moody NR, Thompson AW, Ricker RE, Was GW, Jones RH (eds) Hydrogen effects on material behavior and corrosion deformation interactions. TMS (The Minerals, Metals, and Materials Society), Warrendale, PA

    Google Scholar 

  30. Powell GL (2004) Reaction of oxygen with uranium hydride. In: Chandra D, Bautista RG, Schlapbach L (eds) Advanced materials for energy conversion II. TMS (The Minerals, Metals, and Materials Society), Warrendale, PA

    Google Scholar 

  31. Kirkpatrick JR (1981) Diffusion with a chemical reaction and a moving boundary. J Phys Chem 1981(85):3444–3448

    Article  Google Scholar 

  32. Powell GL, Ceo RN, Harper WL, Kirkpatrick JR (1993) The kinetics of the hydriding of uranium metal II. Z Phys Chem (NF) 181:275–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Louis Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powell, G.L. (2013). The Uranium–Hydrogen Binary System. In: Morrell, J., Jackson, M. (eds) Uranium Processing and Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7591-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7591-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7590-3

  • Online ISBN: 978-1-4614-7591-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics