Skip to main content

Uranium Processing

  • Chapter
  • First Online:
Uranium Processing and Properties

Abstract

Due to typically low concentrations of uranium, chemical complexity, and the varying nature of many uranium ores, the economic recovery of uranium often poses difficulty for the extractive industry. Physical concentration techniques (flotation, gravitational, electromagnetic, etc.) have been met with only limited success for uranium. The methods used for the recovery of uranium have been designed to economically treat large ore volumes. Uranium is a very electropositive metal; thus most direct pyrochemical methods are not applicable and processes often involve modern aqueous extractive metallurgy techniques. In this section the more important features of the extractive processes of uranium will be illustrated with emphasis on the chemical principles involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IAEA (2003) Uranium 2003: Resources, Production and Demand. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. IAEA (1993) Uranium extraction technology. Tech Rep Ser 359. International Atomic Energy Agency, Vienna

    Google Scholar 

  3. Otway HJ, Vander-Horst L, Higgins GH (1973) Socioeconomic aspects of a plowshare project. J Nucl Technol 17:58–68

    Google Scholar 

  4. Gupta CK, Mukerjee TK (1990) Hydrometallurgy in extraction processes, vol I & II. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Gupta CK, Singh H (2003) Uranium resource processing: secondary resources. Springer, New York

    Google Scholar 

  6. Katz JJ, Rabinowitch E (1951) The chemistry of uranium, national nuclear energy series. McGraw Hill, New York

    Google Scholar 

  7. Akin H (1995) Exploring the future of in situ leach uranium mining. Uranium Institute, London

    Google Scholar 

  8. Barlet RW (1992) Solution mining. Gordon and Breach Science Publishers, Langerhorns, PA

    Google Scholar 

  9. Clegg JW, Foley DD (1958) Uranium ore processing. Addison Wesley Publishing, Boston, MA

    Google Scholar 

  10. Craig WM (1982) Shortcut to yellow cake. Nucl Active 27:3–7

    Google Scholar 

  11. Campbell MC (1985) Canadian developments of metallurgical projects in Uranium. In: Proceedings of a technical committee meeting, ST1/PUB/738, ISBN: 92-0-141187-1, Vienna, pp 231–232

    Google Scholar 

  12. James HE (1980) Hitting up the centuries. Nucl Active 22:17–21

    Google Scholar 

  13. Jensen J (1984) Ice cold uranium. Nucl Active 31:26–32

    Google Scholar 

  14. Milde WW (1989) Rabbit lake project: Milling and Metallurgy. CIM Bull 69–75

    Google Scholar 

  15. Mann S (1996) Biomimetic materials chemistry. VCH Publishers, New York

    Google Scholar 

  16. Barret J, Hughes MN, Karavaiko GS, Spencer PA (1993) Metal extraction by bacterial oxidation of metals. Horwood, London

    Google Scholar 

  17. Dwivedy KK, Mathur AK (1995) Bioleaching- our experience. Hydrometallurgy 38:99–109

    Article  Google Scholar 

  18. Natrajan KA (1998) Microbiological applications and techniques in biogeochemistry. In Proceedings of the International Workshop Environ Biogeochem, JNU New Delhi, 59–79

    Google Scholar 

  19. McCready RGL, Wadden D, Marchbank a (1986) Nutrient requirements for the in place leaching of uranium by Thiobacillus ferrooxidans. Hyrdometallurgy 17:61–71

    Article  Google Scholar 

  20. Munoz JA, Gonzalez F, Blazquez ML, Ballester A (1995) A study of the bioleaching of a Spanish uranium ore, Part II: orbital shaker experiments. Hyrdometallurgy 38:59–78

    Article  Google Scholar 

  21. Munoz JA, Gonzalez F, Blazquez ML, Ballester A (1995) A study of the bioleaching of a Spanish uranium ore, Part I: a review of bacterial leaching in the treatment of uranium ores. Hyrdometallurgy 38:39–57

    Article  Google Scholar 

  22. Livesey GE (1980) An Oscar for bacteria. Nucl Active 20:8–11

    Google Scholar 

  23. Rossi G (1990) Biohydrometallurgy. McGraw Hill, New York

    Google Scholar 

  24. Box JC, Prosser AP (1986) A general model for the reaction of several minutes and several reagents in heap and dump leaching. Hyrdometallurgy 16:77–92

    Article  Google Scholar 

  25. Sole KC, Cole PM, Feather AM, Kotze MH (2011) Solvent extraction and Ion exchange applications in Africa’s resurging uranium industry: a review. Prog Hydrometal Appl 29:5–6

    Google Scholar 

  26. Bock J, Valint PL (1982) Uranium extraction from wet process phosphoric acid: a liquid membrane approach. Ind Eng Chem Fundam 21:417–422

    Article  Google Scholar 

  27. Shakir K, Aziz M, Beheir G (1992) Studies on uranium recovery from a uranium bearing phosphatic sandstone by a combined heap leaching-liquid gel extraction process: part 1: heap leaching; part 2: gel extraction. Hydrometallurgy 31:29–54

    Article  Google Scholar 

  28. Small H (1961) Gel liquid extraction: the extraction and separation of some metal salts using TBP. J Inorg Nucl Chem 18:232–244

    Article  Google Scholar 

  29. Sekizuka Y (1973) Analytical applications of organic reagents in hydrophobic gel media. Talanta 18:979–985

    Article  Google Scholar 

  30. Shakir K, Beheir SG (1980) Gel liquid extraction and separation of U-VI, Th-IV, Ce-III and Co-II. Sep Sci Technol 7(15):1445–1458

    Article  Google Scholar 

  31. Babcock WC, Baker RW, Kelly DJ, Lachpelle ED (1980) Coupled transport membranes: the mechanism of uranium transport with a tertiary amine. J Mem Sci 7:71–87

    Article  Google Scholar 

  32. Bautista RG (1993) Liquid membrane separation of metals in aqueous solutions. In Emerging separation technologies for metals and fuels. Minerals Metals Materials Society, Warrendale, Pennsylvania, 1993

    Google Scholar 

  33. Hofman DL, Craig WM, Smith JJ (1990) Modeling and application of a pilot plant scale supported liquid membrane unit for uranyl nitrate extraction. In: Sekine T (ed) Solvent extraction. Elsevier Science, Netherlands

    Google Scholar 

  34. Huang TC, Huang CT (1986) Mechanism of transport of uranyl nitrate across a solid supported liquid membrane using tri butyl phosphate as mobile carrier. J Mem Sci 29:295–308

    Article  Google Scholar 

  35. Bock J, Klein RR, Valint PL, Ho WS (1981) Liquid membrane extraction of Uranium from wet process phosphoric acid—field process demonstration. Paper No. 30b, AIChE Annual Meeting, New Orleans, LA, 8–12 Nov 1981

    Google Scholar 

  36. Chaudry MA, Islam N, Mohammed P (1989) U-VI transport through a TBP kerosene and liquid membrane supported in polypropylene film. J Radioanal Nucl Chem Articles 1(109):11–22

    Google Scholar 

  37. Hirato T, Koyama K, Awakura Y, Majima H (1990) Recovery of U-VI from wet process sulphuric acid by an emulsion type liquid membrane technique. In: Sekine T (ed) Solvent extraction. Elsevier Science, Netherlands

    Google Scholar 

  38. Tourneux JC, Berthet JC, Cantat T, Thuery P, Mezailles N, Ephritikhine M (2011) Exploring the uranyl organometallic chemistry: from single to double uranium−carbon bonds. Am Chem Soc 16(133):6162–6165

    Article  Google Scholar 

  39. Huang TC, Huang CT (1988) Kinetics of the extraction of uranium-VI from nitric acid solutions by bis(2-ethyl hexyl)phosphoric acid. Ind Eng Chem Res 27:1675–1680

    Article  Google Scholar 

  40. Chiarizia R, Horwitz EP (1990) Study of uranium removal from ground water by supported liquid membrane. Solvent Extract Ion Exch 1(8):65–98

    Article  Google Scholar 

  41. Gill JS, Marwah UR, Misra BM (1994) Transport of Sm-III and U-VI across a silicone supported liquid membrane using D2EHPA and TBP. Sep Sci Technol 2(29):193–203

    Article  Google Scholar 

  42. Ramkumar J, Shrimal KS, Maiti B, Krishnamoorthy TS (1996) Selective permeation of Cu2+ and lie through a Nafion ionomer membrane. J Mem Sci 116:31–37

    Article  Google Scholar 

  43. Huang CT, Huang TC (1988) Kinetics of the coupled transport of Uranium-VI across supported liquid membrane containing bis(2-ethylhexyl)phosphoric acid as a mobile carrier. Ind Eng Chem Res 27:1681–1685

    Article  Google Scholar 

  44. Li J, Wang TH, Zhang YX (1997) Effects of impurities on the habit of gypsum in wet process phosphoric acid. Ind Eng Chem Res 36:2657–2661

    Article  Google Scholar 

  45. Chegrouche S, Kebir A (1992) Study of ammonium uranyl carbonate reextraction crystallisation process by ammonium carbonate. Hyrdometallurgy 28:135–147

    Article  Google Scholar 

  46. Lounis A, Gavach C (1997) Treatment of uranium solutions by electrodial. Hydrometallurgy 44:83–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mishra, B., Gubel, N.R., Bhola, R. (2013). Uranium Processing. In: Morrell, J., Jackson, M. (eds) Uranium Processing and Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7591-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7591-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7590-3

  • Online ISBN: 978-1-4614-7591-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics