Skip to main content

Insulin Resistance and Atherosclerosis

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 1796 Accesses

Abstract

Easy and affordable availability of calorie-dense food substrates and increasing adoption of a sedentary lifestyle sans regular exercise have resulted in an increase in the incidence and prevalence of obesity worldwide. A major consequence is the increase in the number of those with diabetes mellitus (DM), which is projected to reach about 300 million people worldwide by 2020 [1]. Following the discovery of insulin by Banting, McLeod, and Best in 1922, it was widely thought that human diabetes mellitus was largely due to a deficiency in the secretion of the hormone. However, in 1936 Sir Harold Percival Himsworth [2] noted variations in the responses of diabetic patients to insulin and proposed the notion that insulin insensitivity, not insulin deficiency, was the defining biochemical defect in many diabetics. In the spring of 1939, he also delivered the Goulstonian Lectures at the Royal College of Physicians of London, highlighting this new paradigm. These lectures were eventually published in 1939 [3–6]. The discovery of the immunoassay method for quantification of human insulin by Yalow and Berson in 1960 [7] soon led to the realization that in many individuals with diabetes, insulin resistance was often characterized by “compensatory” hyperinsulinemia. This has implications as discussed in subsequent sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:193–205.

    CAS  PubMed  Google Scholar 

  2. Himsworth HP. Diabetes mellitus. Lancet. 1936;227:127–30.

    Google Scholar 

  3. Himsworth HP. The mechanism of diabetes mellitus. Lancet. 1939;234:1–6.

    Google Scholar 

  4. Himsworth HP. The mechanism of diabetes mellitus. Lancet. 1939;234:65–8.

    Google Scholar 

  5. Himsworth HP. The mechanism of diabetes mellitus. Lancet. 1939;234:118–22.

    Google Scholar 

  6. Himsworth HP. The mechanism of diabetes mellitus. Lancet. 1939;234:171–6.

    Google Scholar 

  7. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39: 1157–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71.

    Google Scholar 

  9. Moller DE, Flier JS. Insulin resistance–mechanisms, syndromes, and implications. N Engl J Med. 1991;325:938–48.

    CAS  PubMed  Google Scholar 

  10. Seino S, Seino M, Nishi S, Bell GI. Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci USA. 1989;86:114–8.

    Google Scholar 

  11. Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocr Rev. 1995;16: 117–42.

    CAS  PubMed  Google Scholar 

  12. White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem. 1998;182:3–11.

    CAS  PubMed  Google Scholar 

  13. Shepherd PR, Kahn BB. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341:248–57.

    CAS  PubMed  Google Scholar 

  14. Shulman GI. Cellular mechanisms of insulin resistance in humans. Am J Cardiol. 1999;84:3J–10.

    CAS  PubMed  Google Scholar 

  15. Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, Olefsky JM. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem. 1994;269:13689–94.

    CAS  PubMed  Google Scholar 

  16. Sasaoka T, Ishiki M, Sawa T, et al. Comparison of the insulin and insulin-like growth factor 1 mitogenic intracellular signaling pathways. Endocrinology. 1996;137:4427–34.

    CAS  PubMed  Google Scholar 

  17. Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105:311–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Zecchin HG, Bezerra RM, Carvalheira JB, et al. Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance–the obese middle-aged and the spontaneously hypertensive rats. Diabetologia. 2003;46:479–91.

    CAS  PubMed  Google Scholar 

  20. Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest. 1996;98:1897–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976;295: 369–77.

    CAS  PubMed  Google Scholar 

  22. Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest. 1991;64: 5–15.

    CAS  PubMed  Google Scholar 

  23. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    CAS  PubMed  Google Scholar 

  24. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.

    CAS  PubMed  Google Scholar 

  25. Yla-Herttuala S, Bentzon JF, Daemen M, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost. 2011;106:1–19.

    CAS  PubMed  Google Scholar 

  26. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.

    CAS  PubMed  Google Scholar 

  27. Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10:36–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Henry RR. Glucose control and insulin resistance in non-insulin-dependent diabetes mellitus. Ann Intern Med. 1996;124:97–103.

    CAS  PubMed  Google Scholar 

  30. Krauss RM. Triglycerides and atherogenic lipoproteins: rationale for lipid management. Am J Med. 1998;105:58S–62.

    CAS  PubMed  Google Scholar 

  31. Krauss RM. Atherogenicity of triglyceride-rich lipoproteins. Am J Cardiol. 1998;81:13B–7.

    CAS  PubMed  Google Scholar 

  32. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43:1363–79.

    CAS  PubMed  Google Scholar 

  33. McNamara JR, Jenner JL, Li Z, Wilson PW, Schaefer EJ. Change in LDL particle size is associated with change in plasma triglyceride concentration. Arterioscler Thromb. 1992;12:1284–90.

    CAS  PubMed  Google Scholar 

  34. McNamara JR, Campos H, Ordovas JM, Peterson J, Wilson PW, Schaefer EJ. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study. Arteriosclerosis. 1987;7:483–90.

    CAS  PubMed  Google Scholar 

  35. Krauss RM, Williams PT, Lindgren FT, Wood PD. Coordinate changes in levels of human serum low and high density lipoprotein subclasses in healthy men. Arteriosclerosis. 1988;8:155–62.

    CAS  PubMed  Google Scholar 

  36. Blanche PJ, Gong EL, Forte TM, Nichols AV. Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981;665:408–19.

    CAS  PubMed  Google Scholar 

  37. Hopkins GJ, Barter PJ. Role of triglyceride-rich lipoproteins and hepatic lipase in determining the particle size and composition of high density lipoproteins. J Lipid Res. 1986;27:1265–77.

    CAS  PubMed  Google Scholar 

  38. Campos H, Arnold KS, Balestra ME, Innerarity TL, Krauss RM. Differences in receptor binding of LDL subfractions. Arterioscler Thromb Vasc Biol. 1996;16:794–801.

    CAS  PubMed  Google Scholar 

  39. Pascot A, Lemieux I, Prud’homme D, et al. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res. 2001;42:2007–14.

    CAS  PubMed  Google Scholar 

  40. Bjornheden T, Babyi A, Bondjers G, Wiklund O. Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis. 1996;123:43–56.

    CAS  PubMed  Google Scholar 

  41. Anber V, Griffin BA, McConnell M, Packard CJ, Shepherd J. Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis. 1996;124:261–71.

    CAS  PubMed  Google Scholar 

  42. Chait A, Brazg RL, Tribble DL, Krauss RM. Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med. 1993;94:350–6.

    CAS  PubMed  Google Scholar 

  43. de Graaf J, Hak-Lemmers HL, Hectors MP, Demacker PN, Hendriks JC, Stalenhoef AF. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb. 1991;11:298–306.

    PubMed  Google Scholar 

  44. Tribble DL, Holl LG, Wood PD, Krauss RM. Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis. 1992;93:189–99.

    CAS  PubMed  Google Scholar 

  45. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care. 1979;2:120–6.

    CAS  PubMed  Google Scholar 

  46. Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316: 823–8.

    CAS  PubMed  Google Scholar 

  47. Prince CT, Becker DJ, Costacou T, Miller RG, Orchard TJ. Changes in glycaemic control and risk of coronary artery disease in type 1 diabetes mellitus: findings from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC). Diabetologia. 2007;50:2280–8.

    CAS  PubMed  Google Scholar 

  48. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859–66.

    CAS  PubMed  Google Scholar 

  49. Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994;43:1–8.

    CAS  PubMed  Google Scholar 

  50. Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes. 1994;43:1122–9.

    CAS  PubMed  Google Scholar 

  51. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest. 1997;100:115–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272:728–31.

    CAS  PubMed  Google Scholar 

  53. Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation. 2000;101: 676–81.

    CAS  PubMed  Google Scholar 

  54. Studer RK, Craven PA, DeRubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes. 1993;42:118–26.

    CAS  PubMed  Google Scholar 

  55. Feener EP, Xia P, Inoguchi T, Shiba T, Kunisaki M, King GL. Role of protein kinase C in glucose- and angiotensin II-induced plasminogen activator inhibitor expression. Contrib Nephrol. 1996;118:180–7.

    CAS  PubMed  Google Scholar 

  56. Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14:439–47.

    CAS  PubMed  Google Scholar 

  57. Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193:328–34.

    CAS  PubMed  Google Scholar 

  58. Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889–97.

    CAS  PubMed  Google Scholar 

  59. Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab. 2007;293:E337–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. J Clin Invest. 1994;94:771–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Miyazaki A, Nakayama H, Horiuchi S. Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med. 2002;12:258–62.

    CAS  PubMed  Google Scholar 

  62. Ohgami N, Miyazaki A, Sakai M, Kuniyasu A, Nakayama H, Horiuchi S. Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism. J Atheroscler Thromb. 2003;10:1–6.

    CAS  PubMed  Google Scholar 

  63. Roytblat L, Rachinsky M, Fisher A, et al. Raised interleukin-6 levels in obese patients. Obes Res. 2000;8:673–5.

    CAS  PubMed  Google Scholar 

  64. Straczkowski M, Dzienis-Straczkowska S, Stepien A, Kowalska I, Szelachowska M, Kinalska I. Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J Clin Endocrinol Metab. 2002;87:4602–6.

    CAS  PubMed  Google Scholar 

  65. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43:1271–8.

    CAS  PubMed  Google Scholar 

  66. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance.. 2003;100:7265–70.

    Google Scholar 

  67. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95:2409–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282:2131–5.

    CAS  PubMed  Google Scholar 

  69. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582:97–105.

    PubMed Central  PubMed  Google Scholar 

  70. Kim F, Tysseling KA, Rice J, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25:989–94.

    CAS  PubMed  Google Scholar 

  71. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    CAS  PubMed  Google Scholar 

  72. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8.

    CAS  PubMed  Google Scholar 

  73. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–4.

    CAS  PubMed  Google Scholar 

  74. Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem. 1997;272:971–6.

    CAS  PubMed  Google Scholar 

  75. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes. 2002;51:1319–36.

    CAS  PubMed  Google Scholar 

  76. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–6.

    CAS  PubMed  Google Scholar 

  77. Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance.. 2006;103:10741–6.

    Google Scholar 

  78. Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br Med J. 1901;1:760–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80.

    CAS  PubMed  Google Scholar 

  80. Kim JK, Kim YJ, Fillmore JJ, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108:437–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673–7.

    CAS  PubMed  Google Scholar 

  82. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Sugita H, Fujimoto M, Yasukawa T, et al. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J Biol Chem. 2005;280:14203–11.

    CAS  PubMed  Google Scholar 

  84. Yasukawa T, Tokunaga E, Ota H, Sugita H, Martyn JA, Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J Biol Chem. 2005;280:7511–8.

    CAS  PubMed  Google Scholar 

  85. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7:1138–43.

    CAS  PubMed  Google Scholar 

  86. Carvalho-Filho MA, Ueno M, Carvalheira JB, Velloso LA, Saad MJ. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRbeta/IRS-1 and Akt and insulin resistance in muscle of mice. Am J Physiol Endocrinol Metab. 2006;291:E476–82.

    CAS  PubMed  Google Scholar 

  87. Carvalho-Filho MA, Ueno M, Hirabara SM, et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes. 2005;54: 959–67.

    CAS  PubMed  Google Scholar 

  88. Schottelius AJ, Mayo MW, Sartor RB, Baldwin Jr AS. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem. 1999;274:31868–74.

    CAS  PubMed  Google Scholar 

  89. van Exel E, Gussekloo J, de Craen AJ, et al. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes : the Leiden 85-plus study. Diabetes. 2002;51: 1088–92.

    PubMed  Google Scholar 

  90. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy–review of a new approach. Pharmacol Rev. 2003;55:241–69.

    CAS  PubMed  Google Scholar 

  92. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–8.

    CAS  PubMed  Google Scholar 

  95. Kurihara T, Bravo R. Cloning and functional expression of mCCR2, a murine receptor for the C-C chemokines JE and FIC. J Biol Chem. 1996;271: 11603–7.

    CAS  PubMed  Google Scholar 

  96. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Kamei N, Tobe K, Suzuki R, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281:26602–14.

    CAS  PubMed  Google Scholar 

  98. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Inouye KE, Shi H, Howard JK, et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes. 2007;56:2242–50.

    CAS  PubMed  Google Scholar 

  100. Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci. 2007;32:469–76.

    CAS  PubMed  Google Scholar 

  101. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457–61.

    PubMed  Google Scholar 

  102. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.

    PubMed  Google Scholar 

  103. Ou HY, Wu HT, Hung HC, Yang YC, Wu JS, Chang CJ. Endoplasmic reticulum stress induces the expression of Fetuin-A to develop insulin resistance. Endocrinology. 2012;153(7):2974–84.

    CAS  PubMed  Google Scholar 

  104. Achard CS, Laybutt DR. Lipid-induced endoplasmic reticulum stress in liver cells results in two distinct outcomes: adaptation with enhanced insulin signaling or insulin resistance. Endocrinology. 2012;153(5):2164–77.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudevan A. Raghavan MBBS, MD, MRCP(UK) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, K., Raghavan, V.A. (2014). Insulin Resistance and Atherosclerosis. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics