Skip to main content

Lipid: Extracellular Matrix Interactions as Therapeutic Targets in the Atherosclerosis of Diabetes

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 1735 Accesses

Abstract

Most drugs for the treatment of diabetes and cardiovascular disease are targeted at measurable biochemical parameters which are identified risk factors. The targets include cholesterol, triglycerides, blood pressure, and glucose. The absolute target of all such therapies is the prevention of cardiovascular disease being mostly atherosclerosis and its major clinical sequelae of heart attacks and strokes. Cardiovascular disease remains the commonest cause of death in people with diabetes. The initiation of human atherosclerosis depends on extracellular matrix lipoprotein interactions, and this chapter reviews the current knowledge of matrix targets in the development of atherosclerosis associated with diabetes and the potential of matrix components as new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2011;26(2).

    Google Scholar 

  2. Thorp AA, et al. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.

    PubMed  Google Scholar 

  3. Weyer C, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5.

    CAS  PubMed  Google Scholar 

  4. Couper JJ, et al. Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes. Diabetes Care. 2009;32(1):94–9.

    PubMed  Google Scholar 

  5. Reusch JE, Wang CC. Cardiovascular disease in diabetes: where does glucose fit in? J Clin Endocrinol Metab. 2011;96(8):2367–76.

    CAS  PubMed  Google Scholar 

  6. Stratton IM, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    CAS  PubMed  Google Scholar 

  7. Haffner SJ, Cassells H. Hyperglycemia as a cardiovascular risk factor. Am J Med. 2003;115(Suppl 8A):6S–11.

    CAS  PubMed  Google Scholar 

  8. Roger VL, et al. Heart disease and stroke statistics-2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    PubMed  Google Scholar 

  9. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865):813–20.

    CAS  PubMed  Google Scholar 

  10. Fruchart JC, Staels B, Duriez P. PPARS, metabolic disease and atherosclerosis. Pharmacol Res. 2001; 44(5):345–52.

    CAS  PubMed  Google Scholar 

  11. Cooper ME, et al. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens. 2001;14(5 Pt 1):475–86.

    CAS  PubMed  Google Scholar 

  12. Preis SR, et al. Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study. Circulation. 2009;120(3):212–20.

    PubMed Central  PubMed  Google Scholar 

  13. Hannan KM, et al. Troglitazone stimulates repair of the endothelium and inhibits neointimal formation in denuded rat aorta. Arterioscler Thromb Vasc Biol. 2003;23(5):762–8.

    CAS  PubMed  Google Scholar 

  14. de Dios ST, et al. Inhibitory activity of clinical thiazolidinedione peroxisome proliferator activating receptor-gamma ligands toward internal mammary artery, radial artery, and saphenous vein smooth muscle cell proliferation. Circulation. 2003;107(20): 2548–50.

    PubMed  Google Scholar 

  15. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24): 2457–71.

    CAS  PubMed  Google Scholar 

  16. Diamond GA, Bax L, Kaul S. Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death. Ann Intern Med. 2007; 147(8):578–81.

    PubMed  Google Scholar 

  17. Ghosh RK, et al. SGLT2 inhibitors: a new emerging therapeutic class in the treatment of type 2 diabetes mellitus. J Clin Pharmacol. 2012;52(4):457–63.

    CAS  PubMed  Google Scholar 

  18. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.

    CAS  PubMed  Google Scholar 

  19. Ross R. The pathogenesis of atherosclerosis. N Engl J Med. 1986;314:488–500.

    CAS  PubMed  Google Scholar 

  20. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    CAS  PubMed  Google Scholar 

  21. Kolodgie FD, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–8.

    CAS  PubMed  Google Scholar 

  22. Konstantinov IE, Mejevoi N, Anichkov NM. Nikolai N. Anichkov and his theory of atherosclerosis. Tex Heart Inst J. 2006;33(4):417–23.

    PubMed Central  PubMed  Google Scholar 

  23. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ballinger ML, et al. Regulation of glycosaminoglycan structure and atherogenesis. Cell Mol Life Sci. 2004;61(11):1296–306.

    CAS  PubMed  Google Scholar 

  25. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.

    CAS  PubMed  Google Scholar 

  26. Little PJ, Osman N, O'Brien KD. Hyperelongated biglycan: the surreptitious initiator of atherosclerosis. Curr Opin Lipidol. 2008;19:448–54.

    CAS  PubMed  Google Scholar 

  27. Finn AV, et al. Pharmacotherapy of coronary atherosclerosis. Expert Opin Pharmacother. 2009;10(10): 1587–603.

    CAS  PubMed  Google Scholar 

  28. Little PJ, et al. Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-beta1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol. 2002;22(1): 55–60.

    CAS  PubMed  Google Scholar 

  29. Gustafsson M, Boren J. Mechanism of lipoprotein retention by the extracellular matrix. Curr Opin Lipidol. 2004;15(5):505–14.

    CAS  PubMed  Google Scholar 

  30. Hashimura K, et al. Androgens stimulate human vascular smooth muscle cell proteoglycan biosynthesis and increase lipoprotein binding. Endocrinology. 2005;146(4):2085–90.

    CAS  PubMed  Google Scholar 

  31. Ivey ME, Osman N, Little PJ. Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis. 2008;199(2):237–47.

    CAS  PubMed  Google Scholar 

  32. Getachew R, et al. PDGF beta-receptor kinase activity and ERK1/2 mediate glycosaminoglycan elongation on biglycan and increases binding to LDL. Endocrinology. 2010;151(9):4356–67.

    CAS  PubMed  Google Scholar 

  33. Camejo G, et al. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis. 1998;139(2):205–22.

    CAS  PubMed  Google Scholar 

  34. Ballinger ML, et al. Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo. J Cell Mol Med. 2010;14:1408–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    CAS  PubMed  Google Scholar 

  36. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83(2):456S–60.

    CAS  PubMed  Google Scholar 

  37. Little PJ, Chait A, Bobik A. Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Ther. 2011;131(3): 255–68.

    CAS  PubMed  Google Scholar 

  38. Davies MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation. 1996;94(8):2013–20.

    CAS  PubMed  Google Scholar 

  39. Falk E, Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol. 1995;75(6):3B–11.

    CAS  PubMed  Google Scholar 

  40. Burch ML, et al. G protein coupled receptor transactivation: extending the paradigm to include serine/threonine kinase receptors. Int J Biochem Cell Biol. 2012;44(5):722–7.

    CAS  PubMed  Google Scholar 

  41. Pasterkamp G, de Kleijn DP, Borst C. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc Res. 2000;45(4): 843–52.

    CAS  PubMed  Google Scholar 

  42. Campbell JH, Campbell GR. The role of smooth muscle cells in atherosclerosis. Curr Opin Lipidol. 1994;5(5):323–30.

    CAS  PubMed  Google Scholar 

  43. Wight TN. Cell biology of arterial proteoglycans. Arteriosclerosis. 1989;9(1):1–20.

    CAS  PubMed  Google Scholar 

  44. Camejo G, et al. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis. 1988;8(4):368–77.

    CAS  PubMed  Google Scholar 

  45. Williams KJ, Tabas I. The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol. 1998;9(5):471–4.

    CAS  PubMed  Google Scholar 

  46. Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res. 2009; 50(Suppl):S376–81.

    PubMed  Google Scholar 

  47. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol. 2003;91(3A):3A–6.

    CAS  PubMed  Google Scholar 

  49. Schwartz SM, et al. Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol. 2007;27(4):705–13.

    CAS  PubMed  Google Scholar 

  50. Skalen K, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417(6890):750–4.

    CAS  PubMed  Google Scholar 

  51. Nakashima Y, et al. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol. 2007;27(5): 1159–65.

    CAS  PubMed  Google Scholar 

  52. Anggraeni VY, et al. Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis. Biochem Biophys Res Commun. 2011;406(1):36–41.

    CAS  PubMed  Google Scholar 

  53. Newby AC, Southgate KM, Davies M. Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Res Cardiol. 1994;89 Suppl 1:59–70.

    CAS  PubMed  Google Scholar 

  54. Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res. 1999;41(2):376–84.

    CAS  PubMed  Google Scholar 

  55. Plenz GA, et al. Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis. 2003;166(1):1–11.

    CAS  PubMed  Google Scholar 

  56. Siljander PR, et al. Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. J Biol Chem. 2004;279(46):47763–72.

    CAS  PubMed  Google Scholar 

  57. Adiguzel E, et al. Collagens in the progression and complications of atherosclerosis. Vasc Med. 2009;14(1):73–89.

    PubMed  Google Scholar 

  58. Jaeger E, et al. Joint occurrence of collagen mRNA containing cells and macrophages in human atherosclerotic vessels. Atherosclerosis. 1991;86(1):55–68.

    CAS  PubMed  Google Scholar 

  59. Schuppan D, et al. Immunofluorescent localization of type-V collagen as a fibrillar component of the interstitial connective tissue of human oral mucosa, artery and liver. Cell Tissue Res. 1986;243(3):535–43.

    CAS  PubMed  Google Scholar 

  60. Tanner FC, et al. Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ Res. 1998;82(3):396–403.

    CAS  PubMed  Google Scholar 

  61. Chung AW, et al. Enhanced cell cycle entry and mitogen-activated protein kinase-signaling and downregulation of matrix metalloproteinase-1 and -3 in human diabetic arterial vasculature. Atherosclerosis. 2007;195(1):e1–8.

    CAS  PubMed  Google Scholar 

  62. Hollenbeck ST, et al. Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the alpha2beta1 integrin and PDGFbeta receptor. Biochem Biophys Res Commun. 2004;325(1):328–37.

    CAS  PubMed  Google Scholar 

  63. Bendeck MP, et al. Differential expression of alpha 1 type VIII collagen in injured platelet-derived growth factor-BB-stimulated rat carotid arteries. Circ Res. 1996;79(3):524–31.

    CAS  PubMed  Google Scholar 

  64. Adiguzel E, et al. Migration and growth are attenuated in vascular smooth muscle cells with type VIII collagen-null alleles. Arterioscler Thromb Vasc Biol. 2006;26(1):56–61.

    CAS  PubMed  Google Scholar 

  65. de Fougerolles AR, et al. Global expression analysis of extracellular matrix-integrin interactions in monocytes. Immunity. 2000;13(6):749–58.

    PubMed  Google Scholar 

  66. Wesley 2nd RB, et al. Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler Thromb Vasc Biol. 1998;18(3):432–40.

    CAS  PubMed  Google Scholar 

  67. Pentikainen MO, et al. Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol. 2002;22(2):211–7.

    CAS  PubMed  Google Scholar 

  68. Forbes JM, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes. 2004;53(7):1813–23.

    CAS  PubMed  Google Scholar 

  69. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1–31.

    CAS  PubMed  Google Scholar 

  70. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    CAS  PubMed  Google Scholar 

  71. Back M, Ketelhuth DF, Agewall S. Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis. 2010;52(5):410–28.

    PubMed  Google Scholar 

  72. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008;75(2):346–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Death AK, et al. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003;168(2):263–9.

    CAS  PubMed  Google Scholar 

  74. Ho FM, et al. Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. J Cell Biochem. 2007;101(2):442–50.

    CAS  PubMed  Google Scholar 

  75. Hopps E, Caimi G. Matrix metalloproteinases in metabolic syndrome. Eur J Intern Med. 2012;23(2): 99–104.

    CAS  PubMed  Google Scholar 

  76. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–52.

    CAS  PubMed  Google Scholar 

  77. Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol. 2000;10(5):518–27.

    CAS  PubMed  Google Scholar 

  78. Hynes RO, Naba A. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012; 4(1):a004903.

    PubMed  Google Scholar 

  79. Prydz K, Dalen KT. Synthesis and sorting of proteoglycans. J Cell Sci. 2000;113(Pt 2):193–205.

    CAS  PubMed  Google Scholar 

  80. Wight T. In: Fuster V, Ross R, Topol EJ editors. The vascular extracellular matrix, in Atherosclerosis and coronary artery disease. Philadelphia: Lippincott-Raven; 1996. p. 421–440

    Google Scholar 

  81. Hascall VC, Heinegard DK, Wight TN. In: Hay ED editor. Proteoglycans: metabolism and pathology, in cell biology of extracellular matrix. New York: Plenum Press; 1991. p. 149–175.

    Google Scholar 

  82. de Dios ST, et al. Regulation of the atherogenic properties of vascular smooth muscle proteoglycans by oral anti-hyperglycemic agents. J Diabetes Complications. 2007;21(2):108–17.

    PubMed  Google Scholar 

  83. Little PJ, et al. Genistein inhibits PDGF-stimulated proteoglycan synthesis in vascular smooth muscle without blocking PDGFbeta receptor phosphorylation. Arch Biochem Biophys. 2012;525(1):25–31.

    CAS  PubMed  Google Scholar 

  84. Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339(1):237–46.

    CAS  PubMed  Google Scholar 

  85. Cardoso LE, et al. Platelet-derived growth factor differentially regulates the expression and post-translational modification of versican by arterial smooth muscle cells through distinct protein kinase C and extracellular signal-regulated kinase pathways. J Biol Chem. 2010;285(10):6987–95.

    CAS  PubMed  Google Scholar 

  86. Merrilees MJ, et al. Retrovirally mediated overexpression of versican v3 by arterial smooth muscle cells induces tropoelastin synthesis and elastic fiber formation in vitro and in neointima after vascular injury. Circ Res. 2002;90(4):481–7.

    CAS  PubMed  Google Scholar 

  87. Raines EW. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol. 2000;81(3):173–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Tran-Lundmark K, et al. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res. 2008;103(1):43–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Papakonstantinou E, et al. The differential distribution of hyaluronic acid in the layers of human atheromatic aortas is associated with vascular smooth muscle cell proliferation and migration. Atherosclerosis. 1998;138(1):79–89.

    CAS  PubMed  Google Scholar 

  90. Evanko SP, Angello JC, Wight TN. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999;19(4):1004–13.

    CAS  PubMed  Google Scholar 

  91. Cuff CA, et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest. 2001;108(7):1031–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res. 2004;94(9):1158–67.

    CAS  PubMed  Google Scholar 

  93. Lesley J, et al. TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J Biol Chem. 2004;279(24):25745–54.

    CAS  PubMed  Google Scholar 

  94. Bot PT, et al. Hyaluronic acid: targeting immune modulatory components of the extracellular matrix in atherosclerosis. Curr Med Chem. 2008;15(8): 786–91.

    CAS  PubMed  Google Scholar 

  95. Chai S, et al. Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis. Circ Res. 2005;96(5):583–91.

    CAS  PubMed  Google Scholar 

  96. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. McDonald TO, et al. Diabetes and arterial extracellular matrix changes in a porcine model of atherosclerosis. J Histochem Cytochem. 2007;55(11):1149–57.

    CAS  PubMed  Google Scholar 

  98. Finn AV, et al. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.

    CAS  PubMed  Google Scholar 

  99. Libby P, Aikawa M. Mechanisms of plaque stabilization with statins. Am J Cardiol. 2003;91(4A): 4B–8.

    CAS  PubMed  Google Scholar 

  100. Aikawa M, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998; 97(24):2433–44.

    CAS  PubMed  Google Scholar 

  101. Crisby M, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103(7):926–33.

    CAS  PubMed  Google Scholar 

  102. Lim CS, et al. Matrix metalloproteinases in vascular disease—a potential therapeutic target? Curr Vasc Pharmacol. 2010;8(1):75–85.

    CAS  PubMed  Google Scholar 

  103. Franco C, et al. Doxycycline alters vascular smooth muscle cell adhesion, migration, and reorganization of fibrillar collagen matrices. Am J Pathol. 2006; 168(5):1697–709.

    CAS  PubMed  Google Scholar 

  104. Courtman DW, et al. Inward remodeling of the rabbit aorta is blocked by the matrix metalloproteinase inhibitor doxycycline. J Vasc Res. 2004;41(2): 157–65.

    CAS  PubMed  Google Scholar 

  105. Forough R, et al. Metalloproteinase blockade by local overexpression of TIMP-1 increases elastin accumulation in rat carotid artery intima. Arterioscler Thromb Vasc Biol. 1998;18(5):803–7.

    CAS  PubMed  Google Scholar 

  106. Baker AH, et al. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest. 1998;101(6):1478–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. George SJ, et al. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum Gene Ther. 1998;9(6):867–77.

    CAS  PubMed  Google Scholar 

  108. Johnson JL, et al. Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: involvement of macrophage migration and apoptosis. Circulation. 2006;113(20): 2435–44.

    CAS  PubMed  Google Scholar 

  109. Lemaitre V, Soloway PD, D'Armiento J. Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1. Circulation. 2003;107(2):333–8.

    CAS  PubMed  Google Scholar 

  110. Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res. 2002;90(8):897–903.

    CAS  PubMed  Google Scholar 

  111. Guo H, et al. Rosuvastatin inhibits MMP-2 expression and limits the progression of atherosclerosis in LDLR-deficient mice. Arch Med Res. 2009;40(5):345–51.

    CAS  PubMed  Google Scholar 

  112. Little PJ, Ballinger ML, Osman N. Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis. Vasc Health Risk Manag. 2007;3:1–8.

    Google Scholar 

  113. Ivey ME, Little PJ. Thrombin regulates vascular smooth muscle cell proteoglycan synthesis via PAR-1 and multiple downstream signalling pathways. Thromb Res. 2008;123:288–97.

    CAS  PubMed  Google Scholar 

  114. Ballinger ML, et al. Endothelin-1 activates ETA receptors on human vascular smooth muscle cells to yield proteoglycans with increased binding to LDL. Atherosclerosis. 2009;205(2):451–7.

    CAS  PubMed  Google Scholar 

  115. Dadlani H, et al. Smad and p38 MAP kinase-mediated signaling of proteoglycan synthesis in vascular smooth muscle. J Biol Chem. 2008;283(12): 7844–52.

    CAS  PubMed  Google Scholar 

  116. Burch ML, et al. TGF-beta stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad2. Cell Mol Life Sci. 2010; 67(12):2077–90.

    CAS  PubMed  Google Scholar 

  117. Yang SN, et al. Growth factor-mediated hyper-elongation of glycosaminoglycan chains on biglycan requires transcription and translation. Arch Physiol Biochem. 2009;115(3):147–54.

    CAS  PubMed  Google Scholar 

  118. Osman N, et al. TGF-beta stimulates biglycan core protein synthesis but not glycosaminoglycan chain elongation via Akt phosphorylation in vascular smooth muscle. Growth Factors. 2011;29(5): 203–10.

    CAS  PubMed  Google Scholar 

  119. Kretzschmar M, et al. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 1999;13(7):804–16.

    CAS  PubMed  Google Scholar 

  120. Massague J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev. 2003;17(24):2993–7.

    CAS  PubMed  Google Scholar 

  121. Burch ML, Zheng W, Little PJ. Smad linker region phosphorylation in the regulation of extracellular matrix synthesis. Cell Mol Life Sci. 2011;68(1): 97–107.

    CAS  PubMed  Google Scholar 

  122. Matsuzaki K. Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis. 2011;32(11):1578–88.

    CAS  PubMed  Google Scholar 

  123. Bartram CR, et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983;306(5940):277–80.

    CAS  PubMed  Google Scholar 

  124. Buchdunger E, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000;295(1): 139–45.

    CAS  PubMed  Google Scholar 

  125. Boren J, et al. Role of extracellular retention of low density lipoproteins in atherosclerosis. Curr Opin Lipidol. 2000;11(5):451–6.

    CAS  PubMed  Google Scholar 

  126. Toole BP, Wight TN, Tammi MI. Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem. 2002;277(7):4593–6.

    CAS  PubMed  Google Scholar 

  127. Saarni H, Tammi M, Doherty NS. Decreased hyaluronic acid synthesis, a sensitive indicator of cortisol action on fibroblast. J Pharm Pharmacol. 1978; 30(3):200–1.

    CAS  PubMed  Google Scholar 

  128. Sussmann M, et al. Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins. Circ Res. 2004;94(5):592–600.

    CAS  PubMed  Google Scholar 

  129. Goueffic Y et al. Sirolimus blocks the accumulation of hyaluronan (HA) by arterial smooth muscle cells and reduces monocyte adhesion to the ECM. Atherosclerosis. 2007;195:23–30.

    Google Scholar 

  130. Sakr SW, et al. Hyaluronan accumulation is elevated in cultures of low density lipoprotein receptor-deficient cells and is altered by manipulation of cell cholesterol content. J Biol Chem. 2008;283(52): 36195–204.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work described in this report was supported by a National Health and Medical Research Council Australia Project Grant (#1022800 Little and Osman) and National Heart Foundation of Australia grant-in-aid (#G10M5211 Little and Osman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Little B.Pharm., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osman, N., Little, P.J. (2014). Lipid: Extracellular Matrix Interactions as Therapeutic Targets in the Atherosclerosis of Diabetes. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics