Skip to main content

Viewing Abstract Data as Maps

  • Chapter
  • First Online:
Handbook of Human Centric Visualization

Abstract

From telecommunications and abstractions of the Internet to interconnections of medical papers to on-line social networks, technology has spawned an explosion of data in the form of large attributed graphs and networks. Visualization often serves as an essential first step in understanding such data, when little is known. Unfortunately, visualizing large graphs presents its own set of problems, both technically in terms of clutter and cognitively in terms of unfamiliarity with the graph idiom. In this chapter, we consider viewing such data in the form of geographic maps. This provides a view of the data that naturally allows for reduction of clutter and for presentation in a familiar idiom. We describe some techniques for creating such maps, and consider some of the related technical problems. We also present and discuss various applications of this method to real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A weighted Voronoi diagrams can be used to make the area of each Voronoi cell proportional to its weight. We do not use this approach, however, because we want the Voronoi cell to also contain a specific shape, e.g., the bounding box of a label.

References

  1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for the visualization of Graphs. Prentice-Hall (1999)

    Google Scholar 

  2. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Stat. Mechanics: Theory and Experiment 2008, P10,008 (2008)

    Google Scholar 

  3. Brewer, C.: ColorBrewer - selecting good color schemes for maps. www.colorbrewer.org

  4. Cappanera, P.: A survey of obnoxious facility location problems. Technical Report TR-99-11, Dipartimento di Informatica, Universit a di Pisa (1999)

    Google Scholar 

  5. Cleveland, W.S.: Visualizing Data. Hobart Press, Summit, New Jersey, U.S.A. (1993)

    Google Scholar 

  6. Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via color space embeddings. In: 14th Symposium on Graph Drawing (GD), pp. 294–305 (2006)

    Google Scholar 

  7. Duarte, A., Martí, R., Resende, M., Silva, R.: GRASP with path relinking heuristics for the antibandwidth problem. Networks (2011). Doi: 10.1002/net.20418

    Google Scholar 

  8. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.V.: Graphael: Graph animations with evolving layouts. In: G. Liotta (ed.) Graph Drawing, Lecture Notes in Computer Science, vol. 2912, pp. 98–110. Springer (2003)

    Google Scholar 

  9. Fabrikant, S.I., Montello, D.R., Mark, D.M.: The distance-similarity metaphor in region-display spatializations. IEEE Computer Graphics & Application 26, 34–44 (2006)

    Article  Google Scholar 

  10. Fabrikant, S.I., Montello, D.R., Mark, D.M.: The natural landscape metaphor in information visualization: The role of commonsense geomorphology. JASIST 61(2), 253–270 (2010)

    Google Scholar 

  11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987). DOI http://doi.acm.org/10.1145/28869.28874. URL http://doi.acm.org/10.1145/28869.28874

    Google Scholar 

  12. Fuchs, G., Schumann, H.: Visualizing abstract data on maps. In: Proceedings of the Information Visualisation, Eighth International Conference, IV ’04, pp. 139–144. IEEE Computer Society, Washington, DC, USA (2004). DOI 10.1109/IV.2004.152. URL http://dx.doi.org/10.1109/IV.2004.152

  13. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18, 1013–1036 (1989). DOI 10.1137/0218069. URL http://portal.acm.org/citation.cfm?id=75795.75806

  14. Gansner, E.R., Hu, Y.F., Kobourov, S.G.: Gmap: Drawing graphs as maps. http://arxiv1.library.cornell.edu/abs/0907.2585v1 (2009)

  15. Gansner, E.R., Hu, Y.F., Kobourov, S.G., Volinsky, C.: Putting recommendations on the map - visualizing clusters and relations. In: Proceedings of the 3rd ACM Conference on Recommender Systems. ACM (2009)

    Google Scholar 

  16. Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw., Pract. Exper. 30(11), 1203–1233 (2000)

    Google Scholar 

  17. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic graphs. In: 9th Symp. on Experimental Algorithms, pp. 436–448 (2010)

    Google Scholar 

  18. Graphviz graph visualization software. www.graphviz.org/

  19. Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps. IEEE Computer Graphics and Applications 30(6), 54–66 (2010)

    Article  Google Scholar 

  20. Hu, Y., Kobourov, S., Veeramoni, S.: On maximum differential graph coloring. In: Proceedings of the 18th international conference on graph drawing (GD’10), pp. 274–286. Springer-Verlag (2011)

    Google Scholar 

  21. Hu, Y., Kobourov, S., Veeramoni, S.: Embedding, clustering and coloring for dynamic maps. In: Proceedings of IEEE Pacific Visualization Symposium. IEEE Computer Society (2012)

    Google Scholar 

  22. Hu, Y.F., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 8th IEEE International Conference on Data Mining (ICDM), pp. 263–272 (2008)

    Google Scholar 

  23. Hu, Y.F., Scott, J.A.: A multilevel algorithm for wavefront reduction. SIAM Journal on Scientific Computing 23, 1352–1375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keim, D.A., Panse, C., North, S.C.: Medial-axis-based cartograms. IEEE Computer Graphics and Applications 25(3), 60–68 (2005)

    Article  Google Scholar 

  25. van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Comput. Geom. 37(3), 175–187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1–2), 83–97 (1955). DOI 10.1002/nav.3800020109. URL http://dx.doi.org/10.1002/nav.3800020109

  27. Kuhn, W., Blumenthal, B.: Spatialization: spatial metaphors for user interfaces. In: Conference companion on Human factors in computing systems: common ground, CHI ’96, pp. 346–347. ACM, New York, NY, USA (1996). DOI 10.1145/257089.257361. URL http://doi.acm.org/10.1145/257089.257361

  28. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT 35, 1–32 (1997)

    MathSciNet  Google Scholar 

  29. Leung, J.Y.T., Vornberger, O., Witthoff, J.: On some variants of the bandwidth minimization problem. SIAM J. Comput. 13, 650–667 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press (2011)

    Google Scholar 

  31. Lloyd, S.: Last square quantization in pcm. IEEE Transactions on Information Theory 28, 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)

    Article  Google Scholar 

  33. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. of the American Statistical Association pp. 846–850 (1971)

    Google Scholar 

  34. Raspaud, A., Schröder, H., Sýkora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics 309, 3541–2552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Salvini, M.M., Gnos, A.U., Fabrikant, S.I.: Cognitively plausible spatialization of network data. In: Proceedings of the 20th International Cartographic Conference (2011)

    Google Scholar 

  36. Scott, J., Hu, Y.: Level-based heuristics and hill climbing for the antibandwidth maximization problem. Technical Report RAL-TR-2011-019, Ritherford Appleton Laboratory, UK (2011)

    Google Scholar 

  37. Skupin, A.: A cartographic approach to visualizing conference abstracts. IEEE Computer Graphics & Application 22(1), 50–58 (2002)

    Article  Google Scholar 

  38. Skupin, A.: The world of geography: Visualizing a knowledge domain with cartographic means. Proc. National Academy of Sciences 101(Suppl. 1), 5274–5278 (2004)

    Article  Google Scholar 

  39. Skupin, A.: Discrete and continuous conceptualizations of science: Implications for knowledge domain visualization. Journal of Informetrics 3(3), 233–245 (2009)

    Article  Google Scholar 

  40. Skupin, A., Buttenfield, B.P.: Spatial metaphors for visualizing information spaces. In: Proc. AUTO-CARTO 13, pp. 116–125 (1997)

    Google Scholar 

  41. Skupin, A., Fabrikant, S.I.: Spatialization. In: Handbook of Geographic Information Science, pp. 61–80. Blackwell Publishers (2008)

    Google Scholar 

  42. Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices. International Journal for Numerical Methods in Engineering 23, 239–251 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Steele, J., Iliinsky, N.: Beautiful Visualization: Looking at Data through the Eyes of Experts, 1st edn. O’Reilly Media, Inc. (2010)

    Google Scholar 

  44. Ullman, J.D.: Elements of ML programming - ML 97 edition. Prentice Hall (1998)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Stephen North and Chris Volinsky for helpful discussions and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emden R. Gansner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gansner, E.R., Hu, Y., Kobourov, S.G. (2014). Viewing Abstract Data as Maps. In: Huang, W. (eds) Handbook of Human Centric Visualization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7485-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7485-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7484-5

  • Online ISBN: 978-1-4614-7485-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics