Skip to main content

Atherosclerosis Plaque Stress Analysis: A Review

  • Chapter
  • First Online:
Multi-Modality Atherosclerosis Imaging and Diagnosis
  • 1346 Accesses

Abstract

Stroke has been considered to be one of the leading causes of death all over the world. Although many studies have been conducted to understand the mechanism of plaque rupture, which leads to stroke, the exact mechanism still remains unclear. It has been widely accepted that both plaque morphology and biomechanical environment of the plaques will affect plaque vulnerability. Since 1990s, many studies have been devoted to plaque stress analysis in order to demonstrate the possible links between plaque rupture and abnormal plaque stress conditions. In this chapter, plaque wall stress analysis will be reviewed from 2D to 3D, from idealized models to patient-specific plaques in terms of geometrical accuracy, and from structure analysis only to fluid–structure interaction (FSI) analysis, with computational examples from our group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bank AJ, Versluis A, Dodge SM, Douglas WH (2000) Atherosclerotic plaque rupture: a fatigue process? Med Hypotheses 55(6):480–484

    Article  PubMed  CAS  Google Scholar 

  2. Barger AC, Beeuwkee R, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177

    Article  PubMed  CAS  Google Scholar 

  3. Barrett SRH, Sutcliffe MPF, Howarth S, Li ZY, Gillard JH (2009) Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J Biomech 42(11):1650–1655

    Article  PubMed  CAS  Google Scholar 

  4. Beattie D, Xu C, Vito R, Glagov S, Whang MC (1998) Mechanical analysis of heterogeneous, atherosclerotic human aorta. J Biomech Eng 120(5):602–607

    Article  PubMed  CAS  Google Scholar 

  5. Bluestein D, Alemu Y, Avrahami I et al (2008) Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 41(5):1111–1118

    Article  PubMed  Google Scholar 

  6. Chau AH, Chan RC, Shishkov M, MacNeill B, Iftimia N, Teraney GJ et al (2004) Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann Biomed Eng 32(11):1494–1503

    Article  PubMed  Google Scholar 

  7. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structure analysis with histopathological correlation. Circulation 87(4):1179–1187

    Article  PubMed  CAS  Google Scholar 

  8. Creane A, Maher E, Sultan S, Hynes N, Kelly D, Lally C (2010) Finite element modeling of diseased carotid bifurcations generated from in-vivo computerized tomographic angiography. Comput Biol Med 40(4):419–429

    Article  PubMed  Google Scholar 

  9. Ebenstein DM, Coughlin D, Chapman J, Li C, Pruitt LA (2008) Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J Biomed Mater Res A 295(2):H717–H727. doi:10.1002/jbm.a.32321

    Google Scholar 

  10. Ferrara A, Pandolfi A (2008) Numerical simulation of arterial plaque ruptures. Int J Mater Form 1(Suppl 1):1095–1098

    Article  Google Scholar 

  11. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20

    Article  PubMed  Google Scholar 

  12. Fuster V (1994) Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90(4):2126–2146

    Article  PubMed  CAS  Google Scholar 

  13. Gao H, Long Q (2008) Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. J Biomech 41(14):3053–3059

    Article  PubMed  Google Scholar 

  14. Gao H, Long Q, Howarth SPS, Tang TY, Li ZY, Graves MJ, Gillard JH (2009) The reproducibility study of 3D arterial plaque reconstruction and its effects to the stress analysis based on multiple sequence MRI images. J Magn Reson Imaging 30(1):85–93

    Article  PubMed  Google Scholar 

  15. Gao H, Long Q, Graves M, Gillard JH, Li ZY (2009) Carotid arterial plaque stress analysis using fluid–structure interactive simulation based on in vivo magnetic resonance images of four patients. J Biomech 42(10):1416–1423

    Article  PubMed  Google Scholar 

  16. Gao H, Long Q, Sadat U, Graves M, Gillard JH, Li ZY (2009) Stress analysis of carotid atheroma in a TIA patient using MRI-based fluid–structure interaction method. Br J Radiol 82(s46-s54):46–54. doi:10.1259/bjr/20307071

    Article  Google Scholar 

  17. Gasser TC, Holzapfel GA (2007) Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng 35(5):711–723

    Article  PubMed  Google Scholar 

  18. Gerhard AH (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238(2):290–302

    Article  Google Scholar 

  19. Glor FP, Ariff B, Crowe LA, Hughes AD, Cheong PL, Thom SA et al (2003) Carotid geometry reconstruction: a comparison between MRI and ultrasound. Med Phys 30(12):3251–3261

    Article  PubMed  CAS  Google Scholar 

  20. Groen HC, Gijsen FJH, van der Lugt A, Ferguson MS, Hatsukami TS, van der Steen AFW, Yuan C, Wentzel JJ (2007) Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38(8):2379–2381

    Article  PubMed  Google Scholar 

  21. Groen HC, Gijsen FJH, van der Lugt A, Ferguson MS, Hatsukami TS, van der Steen AFW, Yuan C, Wentzel JJ (2008) High shear stress influences plaque vulnerability. Neth Heart J 16(7–8):280–283

    Article  PubMed  CAS  Google Scholar 

  22. Hallow KM, Taylor WR, Rachev A, Vito RP (2009) Markers of inflammation collocate with increased wall stress in human coronary arterial plaque. Biomech Model Mechanobiol 8(6):473–486

    Article  PubMed  Google Scholar 

  23. Holzapfel GA, Stadler M, Schulze-Bauer CA (2002) A layer-specific three dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 30(6):753–767

    Article  PubMed  Google Scholar 

  24. Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126(5):657–665

    Article  PubMed  Google Scholar 

  25. Hoshino T, Chow LA, Hsu JJ, Perlowski AA et al (2009) Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol 297:H802–H810

    Article  PubMed  CAS  Google Scholar 

  26. Howarth S, Li ZY, Trivedi RA, U-King-Im JM, Graves MJ, Kirkpatrick PJ, Gillard JH (2007) Correlation of macrophage location and plaque stress distribution using USPIO-enhanced MRI in a patient with symptomatic severe carotid stenosis: a new insight into risk stratification. Br J Neurosurg 21(4):396–398

    Article  PubMed  Google Scholar 

  27. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056

    Article  PubMed  CAS  Google Scholar 

  28. Huang X, Yang C, Yuan C, Liu F, Canton G, Zheng J, Woodard PK, Sicard GA, Tang D (2009) Patient specific artery shrinkage and 3D zero-stress state in multi-component 3D FSI models for carotid atherosclerotic plaques based on in vivo MRI data. Mol Cell Biomech 6(2):121–134

    PubMed  Google Scholar 

  29. Huang X, Teng Z, Canton G, Ferguson M, Yuan C, Tang D (2010) Intraplaque hemorrhage is associated with higher structural stresses in human atherosclerotic plaques: an in vivo MRI-based 3d fluid–structure interaction study. Biomed Eng Online 9(1):86

    Article  PubMed  Google Scholar 

  30. Imoto K, Hiro T, Fujii T, Murashige A et al (2005) Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessels models and three dimensional intravascular ultrasound imaging. J Am Coll Cardiol 46(8):1507–1515

    Article  PubMed  Google Scholar 

  31. Kaazempur-Morfrad MR, Younis HF, Patel S, Isasi S, Chung C et al (2003) Cyclic strain in human carotid bifurcation and its potential correlation to atherogenesis: idealized and anatomically-realistic models. J Eng Math 47:299–314

    Article  Google Scholar 

  32. Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, Lamuraglia GM, Lee RT, Kamm RD (2004) Characterization of the atherosclerotic carotid bifurcation using MRI, Finite element modeling, and histology. Ann Biomed Eng 32(7):932–946

    Article  PubMed  CAS  Google Scholar 

  33. Karimi R, Zhu T, Bouma BE, Kaazempur Mofrad Mohammad R (2008) Estimation of nonlinear mechanical properties of vascular tissues via elastography. Cardiovasc Eng 8(4):191–202

    Article  PubMed  Google Scholar 

  34. Kock SA, Nygaard JV, Eldrup N, Frund E-T, Klarke A, Paaske WP, Falk E, Kimi WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid–structure interaction models. J Biomech 41(8):1651–1658

    Article  PubMed  Google Scholar 

  35. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83(5):1764–1770

    Article  PubMed  CAS  Google Scholar 

  36. Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P (1996) Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol 16(8):1070–1073

    Article  PubMed  CAS  Google Scholar 

  37. Lee S-W, Steinman DA (2007) On the relative importance of Rheology for image-based CFD models of the carotid bifurcation. J Biomed Eng 129(2):273–278

    Google Scholar 

  38. Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ (2007) Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis. J Biomech 40(16):3715–3724

    Article  PubMed  CAS  Google Scholar 

  39. Li ZY, Howarth S, Trivedi RA, U-King-Im JM, Graves MJ, Brown A, Wang L, Gillard JH (2006) Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J Biomech 39(14):2611–2622

    Article  PubMed  Google Scholar 

  40. Li ZY, Howarth Simon PS, Tang TJ, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 37:1195–1199

    Article  PubMed  Google Scholar 

  41. Li ZY, Howarth SPS, Tang T, Graves MJ, U-King-Im J, Trivedi RA, Kirkpatrick PJ, Gillard JH (2007) Structure analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg 45(4):768–775

    Article  PubMed  Google Scholar 

  42. Long Q, Ariff B, Zhao SZ, Thom SA, Hughes AD, Xu XY (2003) Reproducibility study of 3D geometrical reconstruction of the human carotid bifurcation from magnetic resonance images. Magn Reson Med 49(4):665–674

    Article  PubMed  CAS  Google Scholar 

  43. Loree HM, Kamm RD, Atkinson CM, Lee RT (1991) Turbulent pressure fluctuations on surface of model vascular stenosis. Am J Physiol Heart Circ Physiol 261:H644–H650

    CAS  Google Scholar 

  44. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71(4):850–858

    Article  PubMed  CAS  Google Scholar 

  45. Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT (1994) Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27(2):195–204

    Article  PubMed  CAS  Google Scholar 

  46. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 14(2):230–234

    Article  PubMed  CAS  Google Scholar 

  47. Lowder ML, Li S, Carnell PH, Vito RP (2007) Correction of distortion of histologic sections of arteries. J Biomech 40(2):445–450

    Article  Google Scholar 

  48. Maher E, Creane A, Sultan S, Hynes N, Lally C, Kelly D (2009) Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J Biomech 42:2760–2767

    Article  PubMed  Google Scholar 

  49. Masson I, Boutouyrie P, Laurent S, Humphrey JD, Zidi M (2008) Characterization of arterial wall mechanical behavior and stresses from human clinical data. J Biomech 41(12):2618–2627

    Article  PubMed  Google Scholar 

  50. Moore JA, Steinman DA, Holdworth DW, Ethier CR (1999) Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. J Biomed Eng 27(1):32–41

    CAS  Google Scholar 

  51. Naghavi M, Libby P et al (2003) From vulnerable plaque to vulnerable patient: a call for new definition and risk assessment strategies: Part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  52. Ohayon J, Teppaz P, Finet G, Rioufol G (2001) In-vivo prediction of human coronary plaque rupture locations using intravascular ultrasound and the finite element method. Coron Artery Dis 12(8):655–663

    Article  PubMed  CAS  Google Scholar 

  53. Ohayon J, Finet G, Treyve F, Rioufol G, Dubreuil O (2005) A three dimensional finite element analysis of stress distribution in a coronary atherosclerotic plaque: in vivo prediction of plaque rupture location. Biomech Appl Comput Assist Surg 37:225–241

    Google Scholar 

  54. Ohayon J, Dubreuil O, Tracqui P, Le Floch S, Rioufol G, Chalabreysse L, Thivolet F, Pettiqrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293(3):H1987–H1996

    Article  PubMed  CAS  Google Scholar 

  55. Pocaterra M, Gao H, Das S, Pinelli M, Long Q (2009) Circumferential residual stress distribution and its influence in a diseased carotid artery. In: Proceedings of 2009 ASME summer bioengineering conference, Lake Tahoe, CA, 17–21 June 2009

    Google Scholar 

  56. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944

    Article  PubMed  CAS  Google Scholar 

  57. Richardson PD (2002) Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann Biomed Eng 30(4):524–536

    Article  PubMed  Google Scholar 

  58. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K (2007) Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–e171

    Article  PubMed  Google Scholar 

  59. Shojima M, Oshima M, Takagi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysms: computational fluid dynamic study of 20 middle cerebral aneurysms. Stroke 35:2500–2505

    Article  PubMed  Google Scholar 

  60. Steinman DA, Milner JS, Norley CJ, Stephen PL, Holdsworth DW (2003) Image based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24:559–566

    PubMed  Google Scholar 

  61. Steinman DA (2004) Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord 4(2):183–197

    Article  PubMed  CAS  Google Scholar 

  62. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32(7):947–960

    Article  PubMed  Google Scholar 

  63. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE et al (2004) 3D computational mechanical analysis for human atherosclerotic plaques using MRI-based models with fluid–structure interactions. Lect Notes Comput Sci 3217(1):328–336

    Article  Google Scholar 

  64. Tang D, Yang C, Kobayashi S, Ku DN (2004) Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid structure interactions(FSI) models. J Biomech Eng 126(3):363–370

    Article  PubMed  Google Scholar 

  65. Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Sicard GA, Pilgram TK, Yuan C (2005) Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomed Eng 127(7):1185–1194

    Google Scholar 

  66. Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Peteruccelli JD, Sicard GA, Yuan C (2005) Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng 33(12 special issue):1789–1801

    Article  PubMed  Google Scholar 

  67. Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech 41(4):727–736

    Article  PubMed  Google Scholar 

  68. Tang D, Teng Z, Canton G, Hatsukami TS, Dong L, Huang X, Yuan C (2009) Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. Biomed Eng Online 8:15

    Article  PubMed  CAS  Google Scholar 

  69. Tang D, Teng Z, Canton G, Yang C et al (2009) Sites of rupture in human atherosclerotic carotid plaques are associated with high structure stresses: an in-vivo MRI-based 3D fluid structure interaction study. Stroke 40:3258–3263

    Article  PubMed  Google Scholar 

  70. Teng Z, Sadat U, Li Z, Huang X, Zhu C, Young V, Graves MJ, Gillard JH (2010) Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in-vivo MRI-based 2D finite element study. Ann Biomed Eng 38(10):3096–3101

    Article  PubMed  Google Scholar 

  71. Topoleski LD, Salunke NV, Humphrey JD, Mergner WJ (1997) Composition and history dependent radial compressive behavior of human atherosclerotic plaque. J Biomed Mater Res 35(1):117–127

    Article  PubMed  CAS  Google Scholar 

  72. Topoleski LD, Salunke NV (2000) Mechanical behavior of calcified plaques: a summary of compression ad stress relaxation experiments. Z Kardiol 89(Suppl 2):85–91

    Article  PubMed  Google Scholar 

  73. Trivedi RA, Li ZY, U-King-Im J, Graves MJ, Kirkpatrick PJ, Gillard JH (2007) Identifying vulnerable carotid plaques in vivo using high resolution magnetic resonance imaging-based finite element analysis. J Neurosurg 107(3):536–542

    Article  PubMed  Google Scholar 

  74. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmnani R, Einav S, Gilchrist L, Weinbaum S (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous cap. Proc Natl Acad Sci USA 103(40):14678–14683

    Article  PubMed  CAS  Google Scholar 

  75. Veress AI, Vince DG, Anderson PM, Cornhill JF et al (2000) Vascular mechanics of the coronary artery. Z Kardiol 89(Suppl 2):92–100

    Article  PubMed  Google Scholar 

  76. Versluis A, Bank AJ, Douglas WH (2006) Fatigue and plaque rupture in myocardial infarction. J Biomech 39(2):339–347

    Article  PubMed  Google Scholar 

  77. Vito RP, Dixon SA (2003) Blood vessel constitutive models-1995-2002. Annu Rev Biomed Eng 5:413–439

    Article  PubMed  CAS  Google Scholar 

  78. Vonesh MJ, Cho CH, Pinto JV Jr, Kane BJ, Lee DS et al (1997) Regional vascular mechanical properties by 3D intravascular ultrasound with finite element analysis. Am J Physiol 272(1):H425–H437

    PubMed  CAS  Google Scholar 

  79. Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazempur-Mofrad MR, Kamm RD (2003) On the sensitivity of wall stresses in diseased arteries to variable material properties. J Biomech Eng 125(1):147–155

    Article  PubMed  CAS  Google Scholar 

  80. Wu H-C, Chen SY, James S, Sanjeev G, Carroll JD (2003) Stress analysis using anatomically realistic coronary tree. Med Phys 30(11):2927–2936

    Article  PubMed  Google Scholar 

  81. Yang C, Tang D, Yuan C, Hatsukami TS, Zheng J, Woodard PK (2007) In vivo/ex vivo MRI-based 3D non-Newtonian FSI models for human atherosclerotic plaques compared with fluid/wall-only models. Comput Model Eng Sci 19(3):233–245

    PubMed  Google Scholar 

  82. Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Hinton DP et al (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 3(1):17–32

    Article  PubMed  CAS  Google Scholar 

  83. Zhao SZ, Ariff B, Long Q, Thom SA, Hughes AD, Xu XY (2002) Inter-individual variations in wall shear stress and mechanical stress distribution at the carotid artery bifurcation of healthy humans. J Biomech 35:1367–1377

    Article  PubMed  CAS  Google Scholar 

  84. Zheng J, EI Naga I, Rowold FE, Pilgram TK, Woodard PK, Saffitz JE, Tang D (2005) Quantitative assessment of coronary artery plaque vulnerability by high-resolution magnetic resonance imaging and computational biomechanics: a pilot study ex vivo. Magn Reson Med 54(6):1360–1368

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by the British Heart Foundation (FS/06/048). The authors like to thank Dr ZY Li, Dr M Graves, MD, and JH Gillard from Department of Radiology, Cambridge University, for their contributions to all MR images, and collaborations in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, H., Long, Q. (2014). Atherosclerosis Plaque Stress Analysis: A Review. In: Saba, L., Sanches, J., Pedro, L., Suri, J. (eds) Multi-Modality Atherosclerosis Imaging and Diagnosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7425-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7425-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7424-1

  • Online ISBN: 978-1-4614-7425-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics