Skip to main content

Computational Anatomy in the Abdomen: Automated Multi-Organ and Tumor Analysis from Computed Tomography

  • Chapter
  • First Online:
Computational Intelligence in Biomedical Imaging

Abstract

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis (CAD) applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of tissue. This chapter highlights our recent contributions to abdominal multi-organ analysis employing constraints typical to medical images and adapted to patient data. A new formulation for graph-based methods to segment abdominal organs from multi-phase CT data is first presented. The method extends basic graph cuts by using: multi-phases enhancement modeling, shape priors and location constraints. The multi-organ localization is also addressed using maximum a posteriori (MAP) probability estimations of organs’ location, orientation, and scale. The probabilistic framework models the inter-organ spatial relations using a minimum volume overlap constraint. The liver, spleen, left kidney, right kidney and pancreas are concomitantly analyzed in the multi-organ analysis framework. Finally, the automated detection and segmentation of abdominal tumors (i.e., hepatic tumors) from abdominal CT images is presented using once again shape and enhancement constraints. Features are computed for the tumor candidates and machine learning is used to select the optimal features to separate true and false detections. The methods illustrate multi-scale analyses of the abdomen, from multi-organ to organ and tumors and promise to support the processing of large medical data in the clinically oriented integrated analysis of the abdomen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fritz GA, Schoellnast H, Deutschmann HA, Quehenberger F, Tillich M (2006) Multiphasic multidetector-row CT (MDCT) in detection and staging of transitional cell carcinomas of the upper urinary tract. Eur Radiol 16(6):1244–1252

    Article  Google Scholar 

  2. Voci SL, Gottlieb RH, Fultz PJ, Mehta A, Parthasarathy R, Rubens DJ, Strang JG (2000) Delayed computed tomographic characterization of renal masses: preliminary experience. Abdom Imaging 25(3):317–321

    Article  Google Scholar 

  3. Tsushima Y, Endo K (2000) Spleen enlargement in patients with nonalcoholic fatty liver: correlation between degree of fatty infiltration in liver and size of spleen. Dig Dis Sci 45(1):196–200

    Article  Google Scholar 

  4. Ellert J, Kreel L (1980) The role of computed tomography in the initial staging and subsequent management of the lymphomas. J Comput Assist Tomogr 4(3):368–391

    Article  Google Scholar 

  5. Soyer P et al (1992) Hepatic metastases from colorectal cancer: influence of hepatic volumetric analysis on surgical decision making. Radiology 184(3):695–697

    Google Scholar 

  6. Delingette H, Ayache N (2005) Hepatic surgery simulation. Commun ACM 48(2):31–36

    Article  Google Scholar 

  7. Heimann T et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265

    Article  Google Scholar 

  8. Linguraru MG, Sandberg JA, Li Z, Shah F, Summers RM (2010) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. Med Phys 37(2):771–783

    Article  Google Scholar 

  9. Okada T, Shimada R, Hori M, Nakamoto M, Chen YW, Nakamura H, Sato Y (2008) Automatic segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Acad Radiol 15:1390–1403

    Article  Google Scholar 

  10. Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, Marescaux J (2001) Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg 6(3):131–142

    Article  Google Scholar 

  11. Song Y, Bulpitt A, Brodlie K (2009) Liver segmentation using automatically defined patient specific B-spline surface models. In: Medical Image Computing and Computer Assisted Intervention 2009 Part II, LNCS, vol 5762, pp 43–50

    Google Scholar 

  12. Wimmer A, Soza G, Hornegger J (2009) A generic probabilistic active shape model for organ segmentation. Med Image Comput Comput Assist Interv 12(Pt 2):26–33

    Google Scholar 

  13. Ali AM, Farag AA, El-Baz AS (2007) Graph cuts for kidney segmentation with prior shape constraints. In: Proceedings of Medical Image Computing and Computer Assisted Intervention 2007, Part I, LNCS, vol 4791, pp 384–392

    Google Scholar 

  14. Shim H, Chang S, Tao C, Wang JH, Kaya D, Bae KT (2009) Semiautomated segmentation of kidney from high-resolution multidetector computed tomography images using a graph-cuts technique. J Comput Assist Tomogr 33(6):893–901

    Article  Google Scholar 

  15. So RWK, Chung AC (2009) Multi-level non-rigid image registration using graph-cuts. In: IEEE International conference on acoustics, speech and signal processing, pp 397–400

    Google Scholar 

  16. Danelson KA, Stitzel JD (2008) Volumetric splenic injury measurement in CT scans for comparison with injury score. Biomed Sci Instrum 44:159–164

    Google Scholar 

  17. Linguraru MG, Sandberg JK, Li Z, Pura JA, Summers RM (2009) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. In: Yang GZ et al (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. Lecture notes in computer science, vol 5762. Springer, New York, pp 1001–1008

    Google Scholar 

  18. Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K (2010) Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5:85–98

    Article  Google Scholar 

  19. Linguraru MG, Summers RM (2008) Multi-organ segmentation in 4D contrast-enhanced abdominal CT. In: IEEE symposium on biomedical imaging, pp 45–48

    Google Scholar 

  20. Okada T, Yokota K, Hori M, Nakamoto M, Nakamura H, Sato Y (2008) Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images. In: Medical Image Computing and Computer Assisted Intervention 2008, Part I, LNCS, vol 5241, pp 502–509

    Google Scholar 

  21. Park H, Bland PH, Meyer CR (2003) Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans Med Imaging 22(4):483–492

    Article  Google Scholar 

  22. Seifert S, Barbu A, Zhou K, Liu D, Feulner J, Huber M, Suehling M, Cavallaro A, Comaniciu D (2009) Hierarchical parsing and semantic navigation of full body CT data. In: Proceedings of the SPIE Medical Imaging, vol 7259, pp 725902–725908

    Google Scholar 

  23. Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D (2007) Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2:135–142

    Article  Google Scholar 

  24. Reyes M, Gonzalez Ballester MA, Li Z, Kozic N, Chin S, Summers RM, Linguraru MG (2009) Anatomical variability of organs via principal factor analysis from the construction of an abdominal probabilistic atlas. In: IEEE international symposium on biomedical imaging (ISBI), pp 682–685

    Google Scholar 

  25. Zhou Y, Bai J (2007) Multiple abdominal organ segmentation: an atlas-based fuzzy connectedness approach. IEEE Trans Inf Technol Biomed 11(3):348–352

    Article  Google Scholar 

  26. Bae E, Tai XC (2009) Efficient Global minimization for the multi-phase Chan-Vese model of image segmentation. In: Energy minimization methods in computer vision and pattern recognition. Lecture notes in computer science, vol 5681, pp 28–41

    Google Scholar 

  27. El-Zehiry N, Grady L (2011) Discrete optimization of the multi-phase piecewise constant Mumford-Shah functional. In: Energy minimization methods in computer vision and pattern recognition. Lecture notes in computer science, vol 6819, pp 233–246

    Google Scholar 

  28. Montillo A, Shotton J, Winn J, Iglesias JE, Metaxas D, Criminisi A (2011) Entangled decision forests and their application for semantic segmentation of CT images. In: Information processing in medical imaging. Lecture notes in computer science, vol 6801, pp 184–196

    Google Scholar 

  29. Zhan Y, Zhou XS, Peng Z, Krishnan A (2008) Active scheduling of organ detection and segmentation in whole-body medical images. Med Image Comput Comput Assist Interv 11(Pt 1):313–321

    Google Scholar 

  30. Hu X, Shimizu A, Kobatake H, Nawano S (2004) Independent analysis of four-phase abdominal CT images. In: Medical Image Computing and Computer Assisted Intervention 2004, LNCS, vol 3217, pp 916–924

    Google Scholar 

  31. Sadananthan SA, Zheng W, Chee MW, Zagorodnov V (2010) Skull stripping using graph cuts. Neuroimage 49(1):225–239

    Article  Google Scholar 

  32. Sakashita M, Kitasaka T, Mori K, Suenaga Y, Nawano S (2007) A method for extracting multi-organ from four-phase contrasted CT images based on CT value distribution estimation using EM-algorithm. In: Proceedings of SPIE Medical Imaging, vol 6509, pp 1C1–1C12

    Google Scholar 

  33. Yao J, Summers RM (2009) Statistical location model for abdominal organ localization. Medical Image Computing and Computer Assisted Intervention 2009, Part II, LNCS, vol 5762, pp 9–17

    Google Scholar 

  34. Yao C et al (2006) Simultaneous location detection of multi-organ by atlas-guided eigen-organ method in volumetric medical images. Int J Comput Assist Radiol Surg 1:42–45

    Google Scholar 

  35. Pauly O, Glocker B, Criminisi A, Mateus D, Möller AM, Nekolla S, Navab N (2011) Fast multiple organ detection and localization in whole-body MR dixon sequences. Med Image Comput Comput Assist Interv 14(Pt 3):239–247

    Google Scholar 

  36. Wang H, Stount DB, Chatziioannou AF (2012) Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images. IEEE Trans Med Imaging 31(1):88–102

    Article  Google Scholar 

  37. American Cancer Society (2011) Cancer facts and figures 2011. American Cancer Society, Atlanta

    Google Scholar 

  38. Lewis RL (2007) Liver and biliary tract tumors. In: Goldman L, Ausiello D (eds) Cecil medicine, 23rd edn. Saunders Elsevier, Philadelphia (Chapter 206)

    Google Scholar 

  39. Beck A, Aurich V (2007) HepaTux – a semiautomatic liver segmentation system. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge, pp 225–233

    Google Scholar 

  40. Dawant BM et al (2007) Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge, pp 215–221

    Google Scholar 

  41. Kainmuller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge, pp 109–116

    Google Scholar 

  42. Rusko L et al (2007) Fully automatic liver segmentation for contrast-enhanced CT images. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge, pp 143–150

    Google Scholar 

  43. Schmidt G et al (2007) Cognition network technology for a fully automated 3D segmentation of the liver. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge, pp 125–133

    Google Scholar 

  44. Deng X, Du G (2008) Editorial: 3D segmentation in the clinic: a grand challenge II – liver tumor segmentation. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  45. Stawiaski J, Decenciere E, Bidault F (2008) Interactive liver tumor segmentation using graph-cuts and watershed. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  46. Moltz J, Bornemann L, Dicken V, Peitgen H (2008) Segmentation of liver metastases in CT scans by adaptive thresholding and morphological processing. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  47. Zhou J et al (2008) Semi-automatic segmentation of 3D liver tumors from CT scans using voxel classification and propagational learning. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  48. Smeets D, Stijnen B, Loeckx D, Dobbelaer B, Suetens P (2008) Segmentation of liver metastases using a level set method with spiral-scanning technique and supervised fuzzy pixel classification. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  49. Schmidt G, Binnig G, Kietzmann M, Kim J (2008) Cognition network technology for a fully automated 3D segmentation of liver tumors. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  50. Shimizu A et al (2008) Ensemble segmentation using AdaBoost with application to liver lesion extraction from a CT volume. In: Medical Image Computing and Computer Assisted Intervention workshop on 3D segmentation in the clinic: a grand challenge II

    Google Scholar 

  51. Gonsalves CF et al (2011) Radioembolization as salvage therapy for hepatic metastasis of uveal melanoma: a single-institution experience. Am J Roentgenol 196(2):468–473

    Article  MathSciNet  Google Scholar 

  52. Pamulapati V, Venkatesan A, Wood BJ, Linguraru MG (2012) Liver segmental anatomy and analysis from vessel and tumor segmentation via optimized graph cuts. In: Yoshida H, Sakas G, Linguraru MG (eds) MICCAI 2011 workshop on abdominal imaging – computational and clinical applications. Lecture notes in computer science, vol 7029. Springer, New York, pp 189–197

    Google Scholar 

  53. Shevchenko N et al (2010) MiMed liver: a planning system for liver surgery. In: Proceedings of the IEEE engineering in medicine and biology society, pp 1882–1885

    Google Scholar 

  54. Peterhans A et al (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robotics Comput Assist Surg 7(1):7–16

    Google Scholar 

  55. Boykov Y, Jolly MP (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: International conference on computer vision, vol I, pp 105–112

    Google Scholar 

  56. Ben Ayed I, Punithakumar K, Li S, Islam A, Chong J (2009) Left ventricle segmentation via graph cut distribution matching. Med Image Comput Comput Assist Interv 12(Pt 2):901–909

    Google Scholar 

  57. Chen JH, Shapiro LG (2008) Medical image segmentation via min S-T cuts with sides constraints. In: International conference on pattern recognition, pp 1–4

    Google Scholar 

  58. Lin X, Cowan B, Young A (2005) Model-based graph cut method for segmentation of the left ventricle. In: Proceedings of the IEEE engineering in medicine and biology society, vol 3, pp 3059–3062

    Google Scholar 

  59. Bauer C, Pock T, Sorantin E, Bischof H, Beichel R (2010) Segmentation of interwoven 3D tubular tree structures utilizing shape priors and graph cuts. Med Image Anal 14(2):172–184

    Article  Google Scholar 

  60. Esneault S, Lafon C, Dillenseger JL (2010) Liver vessels segmentation using a hybrid geometrical moments/graph cuts method. IEEE Trans Biomed Eng 57(2):276–283

    Article  Google Scholar 

  61. Freiman M, Kronman A, Esses SJ, Joskowicz L, Sosna J (2010) Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation. In: Med Image Comput Comput Assist Interv, LNCS, vol 6363, pp 73–80

    Google Scholar 

  62. Shimizu A, Nakagomi K, Narihira T, Kobatake H, Nawano S, Shinozaki K, Ishizu K, Togashi K (2010) Automated segmentation of 3D CT images based on statistical atlas and graph cuts. In: Med Image Comput Comput Assist Interv workshop on Medical Computer Vision, pp 129–138

    Google Scholar 

  63. García-Lorenzo D, Lecoeur J, Arnold DL, Collins DL, Barillot C (2009) Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts. Med Image Comput Comput Assist Interv 12(Pt 2):584–591

    Google Scholar 

  64. van der Lijn F, den Heijer T, Breteler MM, Niessen WJ (2008) Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. Neuroimage 43(4):708–720

    Article  Google Scholar 

  65. Lötjönen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, Rueckert D (2010) Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage 49(3):2352–2365

    Article  Google Scholar 

  66. Wels M, Carneiro G, Aplas A, Huber M, Hornegger J, Comaniciu D (2008) A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. Med Image Comput Comput Assist Interv 11(Pt 1):67–75

    Google Scholar 

  67. Zheng Y, Baloch S, Englande S, Schnall MD, Shen S (2007) Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images. In: Med Image Comput Comput Assist Interv 2007, Part II, LNCS, vol 4792, pp 393–401

    Google Scholar 

  68. Liu L, Raber D et al (2008) Interactive separation of segmented bones in CT volumes using graph cut. In: Proceedings of Med Image Comput Comput Assist Interv 2008, Part I, LNCS, vol 5241, pp 296–304

    Google Scholar 

  69. Seabra JC, Pedro LM, Fernandes JF, Sanches JM (2009) A 3-D ultrasound-based framework to characterize the echo morphology of carotid plaques. IEEE Trans Biomed Eng 56(5):1442–1453

    Article  Google Scholar 

  70. Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2009) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852

    Article  Google Scholar 

  71. Deleus F, Van Hulle MM (2009) A connectivity-based method for defining regions-of-interest in fMRI data. IEEE Trans Image Process 18(8):1760–1771

    Article  MathSciNet  Google Scholar 

  72. Gramfort A, Keriven R, Clerc M (2010) Graph-based variability estimation in single-trial event-related neural responses. IEEE Trans Biomed Eng 57(5):1051–1061

    Article  Google Scholar 

  73. Grady L, Jolly MP (2008) Weights and topology: a study of the effects of graph construction on 3D image segmentation. In: Med Image Comput Comput Assist Interv 2008, Part I, LNCS, vol 5241, pp 153–161

    Google Scholar 

  74. Linguraru MG, Pura JA, Chowdhury A, Summers RM (2010) Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Jiang T et al (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Lecture notes in computer science, vol 6363. Springer, New York, pp 89–96

    Google Scholar 

  75. Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Statistical 4D graphs for multi-organ segmentation from multi-phase abdominal CT. Med Image Anal 16(4):904–914

    Article  Google Scholar 

  76. Liu X, Linguraru MG, Yao J, Summers RM (2010) Organ pose distribution model and an MAP framework for automated abdominal multi-organ localization. In: Liao H et al (eds) Medical imaging and augmented reality – MIAR 2010. Lecture notes in computer science, vol 6326. Springer, New York, pp 393–402

    Google Scholar 

  77. Liu X, Linguraru MG, Yao J, Summers RM (2011) Abdominal multi-organ localization on contrast-enhanced ct based on maximum a posteriori probability and minimum volume overlap. In: IEEE international symposium on biomedical imaging (ISBI), pp 2083–1086

    Google Scholar 

  78. Linguraru MG, Richbourg WJ, Watt JM, Pamulapati V, Summers RM (2012) Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts. In: Yoshida H, Sakas G, Linguraru MG (eds) MICCAI 2011 workshop on abdominal imaging – computational and clinical applications. Lecture notes in computer science, vol 7029. Springer, New York, pp 198–206

    Google Scholar 

  79. Linguraru MG, Richbourg WJ, Pamulapati V, Wang S, Summers RM (2012) Robust automated detection, segmentation and classification of hepatic tumors from CT Data. In: SPIE medical imaging, vol 8317, 83170J-1-8

    Google Scholar 

  80. Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32(1):71–86

    Article  Google Scholar 

  81. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  82. Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2(3):243–260

    Article  Google Scholar 

  83. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  84. Burden RL, Faires JD (1993) Numerical analysis, 5th edn. PWS-Kent Publishing Company, Boston

    MATH  Google Scholar 

  85. Watt J, Linguraru MG, Summers RM (2011) Affine invariant shape parameterization to assess local 3D shape in abdominal organs. In: SPIE medical imaging, vol 7965, 79650F

    Google Scholar 

  86. Boykov Y, Kolmogorov V (2003) Computing geodesics and minimal surfaces via graph cuts. In: International conference on computer vision, pp 26–33

    Google Scholar 

  87. Sato Y et al (1997) 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Lecture notes in computer science, vol 1205, pp 213–222

    Google Scholar 

  88. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–97

    Article  MATH  Google Scholar 

  89. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  90. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  Google Scholar 

  91. Metz CE, Herman BA, Roe CA (1998) Statistical comparison of two ROC curve estimates obtained from partially-paired datasets. Med Decis Making 18:110–121

    Article  Google Scholar 

  92. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  93. Linguraru MG, Sandberg JK, Jones E, Petrick N, Summers RM (2012) Assessing hepatomegaly: automated volumetric analysis of the liver. Acad Radiol 19(5):588–598

    Article  Google Scholar 

  94. Linguraru MG, Yao J, Gautam R, Peterson J, Li Z, Linehan WM, Summers RM (2009) Renal tumor quantification and classification in contrast-enhanced abdominal CT. Pattern Recognit 42(6):1149–1161 (special issue on cancer detection, Elsevier)

    Google Scholar 

  95. Linguraru MG, Wang S, Shah F, Gautam R, Peterson J, Linehan WM, Summers RM (2011) Automated noninvasive classification of renal cancer on multi-phase CT. Med Phys 38(10):5738–5746

    Article  Google Scholar 

  96. Reyes M, Gonzalez Ballester MA, Kozic N, Sandberg JK, Summers RM, Linguraru MG (2010) Hierarchical patch generation for multi-level statistical shape analysis by principal factor analysis decomposition. In: SPIE Medical Imaging, vol 7626, p 762617

    Google Scholar 

  97. Okada T, Linguraru MG, Yoshida Y, Hori M, Summers RM, Chen YW, Tomiyama N, Sato Y (2012) Prediction-based statistical atlas and its application to abdominal multi-organ segmentation in CT Images. In: Yoshida H, Sakas G, Linguraru MG (eds) MICCAI 2011 workshop on abdominal imaging – computational and clinical applications. Lecture notes in computer science, vol 7029. Springer, New York, pp 173–180

    Google Scholar 

  98. Suzuki M, Linguraru MG, Summers RM, Okada K (2012) Analyses of missing organs in abdominal multi-organ segmentation. In: Yoshida H, Sakasm G, Linguraru MG (eds) MICCAI 2011 workshop on abdominal imaging – computational and clinical applications. Lecture notes in computer science, vol 7029. Springer, New York, pp 256–263

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the National Institutes of Health, Clinical Center. The authors would like to acknowledge the contributions of (in alphabetical order) Ananda S. Chowdhury, Zhixi Li, Xiaofeng Liu, Vivek Pamulapati, John A. Pura,William J. Richbrough, Jesse K. Sandberg, Shijun Wang, Jeremy M. Watt, and Jianhua Yao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius George Linguraru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linguraru, M.G., Summers, R.M. (2014). Computational Anatomy in the Abdomen: Automated Multi-Organ and Tumor Analysis from Computed Tomography. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics