Skip to main content

Chemical Reactions Induced by Core Electron Excitations

  • Chapter
  • First Online:
Fundamentals of Mass Spectrometry

Abstract

Core electrons (inner shell electrons) localize within specific atoms because they are bound in core orbitals by quite high binding energy. Therefore, it is considered that, unlike valence electrons core electrons do not participate in chemical bonding. If this is the case, what phenomena take place in exciting or ionizing the core electrons by providing high energy? Does the core electron excitation/ionization indeed induce any change in chemical bonds or structural change in materials?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin

    Book  Google Scholar 

  2. Sham TK (ed) (2002) Chemical applications of synchrotron radiation. World Scientific, Singapore

    Google Scholar 

  3. Chen CT, Ma Y, Sette F (1989) Phys Rev A 40:6737

    Article  CAS  Google Scholar 

  4. Ramaker DE, White CT, Murday JS (1981) J Vac Sci Technol 18:748

    Article  Google Scholar 

  5. Ramaker DE, White CT, Murday JS (1982) Phys Lett A 89:211

    Article  Google Scholar 

  6. Ueda K (2003) J Phys B At Mol Opt Phys 36:R1

    Article  CAS  Google Scholar 

  7. Tanaka K, Tinone MCK, Ikeura H, Sekiguchi T, Sekitani T (1995) Rev Sci Instrum 66:1474

    Article  CAS  Google Scholar 

  8. For instance, pulse duration during single-bunch operations of other SR facilities is 800 ns for BESSY-II in Berlin, Germany, and 311 ns for LNLS in Campinas, Brazil

    Google Scholar 

  9. Romberg R, Frigo SP, Ogurtsov A, Feulner P, Menzel D (2000) Surf Sci 451:116

    Article  CAS  Google Scholar 

  10. Romberg R, Heckmair N, Frigo SP, Ogurtsov A, Menzel D, Feulner P (2000) Phys Rev Lett 84:374

    Article  CAS  Google Scholar 

  11. Menzel D, Feulner P (2001) J Phys Condens Matter 13:11249

    Article  CAS  Google Scholar 

  12. Wada S, Matsumoto Y, Kohno M, Sekitani T, Tanaka K (2004) J Electron Spectrosc Relat Phenom 137–140:211

    Article  Google Scholar 

  13. Wada S, Kizaki H, Matsumoto Y, Sumii R, Tanaka K (2006) J Phys Condens Matter 18:S1629

    Article  CAS  Google Scholar 

  14. Yamanouchi K (2002) Science 295:1659

    Article  CAS  Google Scholar 

  15. Smith DJ, Ledingham KWD, Singhal RP, Kilic HS, McCanny T, Langley AJ, Taday PF, Kosmidis C (1998) Rapid Commun Mass Spectrom 12:813

    Article  CAS  Google Scholar 

  16. Harada H, Shimizu S, Yatsuhashi T, Sakabe S, Izawa Y, Nakashima N (2001) Chem Phys Lett 342:563

    Article  CAS  Google Scholar 

  17. Rosenberg RA, Wen C-R, Tan K, Chen J-M (1990) J Chem Phys 92:5196

    Article  CAS  Google Scholar 

  18. Marquette A, Gisselbrecht M, Benten W, Meyer M (2000) Phys Rev A 62:022513

    Article  Google Scholar 

  19. Hikosaka Y, Lablanquie P, Shigemasa E (2005) J Phys B At Mol Opt Phys 38:3597

    Article  CAS  Google Scholar 

  20. Hikosaka Y, Gejo T, Tamura T, Honma K, Tamenori Y, Shigemasa E (2007) J Phys B At Mol Opt Phys 40:2091

    Article  CAS  Google Scholar 

  21. Mase K, Nagasono M, Tanaka S, Kamada M, Urisu T, Murata Y (1997) Rev Sci Instrum 68:1703

    Article  CAS  Google Scholar 

  22. Mase K, Nagasono M, Tanaka S, Sekitani T, Nagaoka S (2003) S Low Temp Phys 29:243

    Article  CAS  Google Scholar 

  23. Kobayashi E, Mase K, Nambu A, Seo J, Tanaka S, Kakiuchi T, Okudaira KK, Nagaoka S, Tanaka M (2006) J Phys Condens Matter 18:S1389

    Article  CAS  Google Scholar 

  24. Eberhardt W, Sham TK, Carr R, Krummacher S, Strongin M, Weng SL, Wesner D (1983) Phys Rev Lett 50:1038

    Article  CAS  Google Scholar 

  25. Tanaka K, Sako EO, Ikenaga E, Isari K, Sardar SA, Wada S, Sekitani T, Mase K, Ueno N (2001) J Electron Spectrosc Relat Phenom 119:255

    Article  CAS  Google Scholar 

  26. Tinone MCK, Tanaka K, Maruyama J, Ueno N, Imamura M, Matsubayashi N (1994) J Chem Phys 100:5988

    Article  CAS  Google Scholar 

  27. Wada S, Sako EO, Sumii R, Waki S, Isari K, Sekiguchi T, Sekitani T, Tanaka K (2003) Nucl Instrum Methods Phys Res B 199:361

    Article  CAS  Google Scholar 

  28. Wada S, Sumii R, Isari K, Waki S, Sako EO, Sekiguchi T, Sekitani T, Tanaka K (2003) Surf Sci 528:242

    Article  CAS  Google Scholar 

  29. Treichler R, Riedl W, Wurth W, Feulner P, Menzel D (1985) Phys Rev Lett 54:462

    Article  CAS  Google Scholar 

  30. Treichler R, Riedl W, Feulner P, Menzel D (1991) Surf Sci 243:239

    Article  CAS  Google Scholar 

  31. Jaeger R, Stöhr J, Kendelewicz J (1983) Phys Rev B 28:1145

    Article  CAS  Google Scholar 

  32. Jaeger R, Stöhr J, Kendelewicz J (1983) Surf Sci 134:547

    Article  CAS  Google Scholar 

  33. Coulman D, Puschmann A, Höfer U, Steinrück H-P, Wurth W, Feulner P, Menzel D (1990) J Chem Phys 93:58

    Article  CAS  Google Scholar 

  34. Tanaka K, Kizaki H, Sumii R, Matsumoto Y, Wada S (2006) Radiat Phys Chem 75:2076

    Article  CAS  Google Scholar 

  35. Kizaki H, Wada S, Sako EO, Sumii R, Waki S, Isari K, Sekitani T, Sekiguchi T, Tanaka K (2005) J Electron Spectrosc Relat Phenom 144–147:447

    Article  Google Scholar 

  36. Wada S, Sumii R, Kizaki H, Iizuka Y, Matsumoto Y, Sekitani T, Tanaka K (2005) Surf Sci 593:283

    Article  CAS  Google Scholar 

  37. Kizaki H, Matsumoto Y, Ban H, Morishita K, Wada S, Tanaka K (2007) Surf Sci 601:3956

    Article  CAS  Google Scholar 

  38. Ikenaga E, Isari K, Kudara K, Yasui Y, Sardar SA, Wada S, Sekitani T, Tanaka K, Mase K, Tanaka S (2001) J Chem Phys 114:2751

    Article  CAS  Google Scholar 

  39. Ikenaga E, Kudara K, Kusaba K, Isari K, Sardar SA, Wada S, Mase K, Sekitani T, Tanaka K (2001) J Electron Spectrosc Relat Phenom 114–116:585

    Article  Google Scholar 

  40. Sekitani T, Kusaba K, Morita K, Nanbu Y, Isari K, Ikenaga E, Wada S, Tanaka K (2003) Surf Sci 532–535:267

    Article  Google Scholar 

  41. Sako EO, Kanameda Y, Ikenaga E, Mitani M, Takahashi O, Saito K, Iwata S, Wada S, Sekitani T, Tanaka K (2001) J Electron Spectrosc Relat Phenom 114–116:591

    Article  Google Scholar 

  42. Menzel D (2006) Surf Interface Anal 38:1702

    Article  CAS  Google Scholar 

  43. Takahashi O, Matsui T, Kawano A, Tabayashi K, Yamasaki K (2007) J Mol Struct 808:35

    Article  CAS  Google Scholar 

  44. Morin P, Nenner I (1986) Phys Rev Lett 56:1913

    Article  CAS  Google Scholar 

  45. Björneholm O (2001) J Chem Phys 115:4139, and references therein

    Article  Google Scholar 

  46. Takahashi O, Tabayashi K, Wada S, Sumii R, Tanaka K, Odelius M, Pettersson LGM (2006) J Chem Phys 124:124901

    Article  Google Scholar 

  47. LCLS homepage. https://portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx

  48. SACLA homepage. http://xfel.riken.jp/eng/index.html

  49. Popmintchev T, Chen M-C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke OD, Pugzlys A, Baltuška A, Shim B, Schrauth SE, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane MM, Kapteyn HC (2012) Science 336:1287

    Article  CAS  Google Scholar 

  50. Young L, Kanter EP, Krässig B, Li Y, March AM, Pratt ST, Santra R, Southworth SH, Rohringer N, DiMauro LF, Doumy G, Roedig CA, Berrah N, Fang L, Hoener M, Bucksbaum PH, Cryan JP, Ghimire S, Glownia JM, Reis DA, Bozek JD, Bostedt C, Messerschmidt M (2010) Nature 466:56

    Article  CAS  Google Scholar 

  51. Berrah N, Fang L, Murphy B, Osipov T, Ueda K, Kukk E, Feifeld R, van der Meulen P, Salen P, Schmidt HT, Thomas RD, Larsson M, Richter R, Prince KC, Bozek JD, Bostedt C, Wada S, Piancastelli MN, Tashiro M, Ehara M (2011) Proc Nat Acad Sci 108:16912

    Article  CAS  Google Scholar 

  52. Meyer M, Radcliffe P, Tschentscher T, Costello JT, Cavalieri AL, Grguras I, Maier AR, Kienberger R, Bozek JD, Bostedt C, Schorb S, Coffee R, Messerschmidt M, Roedig C, Sistrunk E, DiMauro LF, Doumy G, Ueda K, Wada S, Dusterer S, Kazansky AK, Kabachnik NM (2012) Phys Rev Lett 108:063007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wada, Si., Tanaka, K. (2013). Chemical Reactions Induced by Core Electron Excitations. In: Hiraoka, K. (eds) Fundamentals of Mass Spectrometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7233-9_4

Download citation

Publish with us

Policies and ethics