Skip to main content

Multidrug Resistance: A Role for Membrane Physics, pH and Drug Transporters

  • Chapter
  • First Online:
Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 1))

  • 1824 Accesses

Abstract

Cancer is the second cause of mortality worldwide (~8 million death a year) with a cost amounting to ~$900b a year. Early treatment is of paramount importance, and tissue susceptible to becoming cancerous is a target for preventative treatment. Multi-drug resistance (MDR) is a common cause of chemotherapeutic failure in the case of 90 % of metastatic cancer. Different valid theories have been suggested about MDR (drugs transporters, pH, membrane and so on) but there is now a need to provide a unified model concerning all these observations. Herein we show how the alteration in the membrane physical properties mediated by pH changes and the expression of drug transporters are paramount in MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

MDR:

Multi-drug resistance

NHE1:

The sodium-hydrogen exchanger 1

Pgp:

P-glycoprotein

References

  1. Mistry M, Parkin DM, Ahmad AS, Sasieni P. Cancer incidence in the United Kingdom: projections to the year 2030. Br J Cancer. 2011;105:1795–803.

    Article  PubMed  CAS  Google Scholar 

  2. Gillies RJ, Rgahunand N, Karczmar GS, Bhujwalla Z. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002;16:430–50.

    Article  PubMed  Google Scholar 

  3. Keizer HG, Joenje H. Increased cytosolic ph in multidrug-resistant human lung tumor cells: effect of verapamil. J Natl Cancer Inst. 1989;81:706–9.

    Article  PubMed  CAS  Google Scholar 

  4. Boscoboinik D, Gupta RS, Epand RM. Investigation of the relationship between altered intracellular pH and multidrug resistance in mammalian cells. Br J Cancer. 1990;61:568–72.

    Article  PubMed  CAS  Google Scholar 

  5. Cardone RA, Casavola V, Reshkin SJ. The role of distrubed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.

    Article  PubMed  CAS  Google Scholar 

  6. Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J Pharmacol Exp Ther. 2008;324:95–102.

    Article  PubMed  CAS  Google Scholar 

  7. Endicott JA, Ling V. The biochemicstry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–71.

    Article  PubMed  CAS  Google Scholar 

  8. Fiske JL, Fomin VP, Brown ML, Duncan RL, Sikes RA. Voltage-senstive ion channels and cancer. Cancer Metastasis Rev. 2006;25:493–500.

    Article  PubMed  CAS  Google Scholar 

  9. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:103–31.

    Article  Google Scholar 

  10. Rauch C. The “multi” of drug resistance explained by oscillating drug transporters, drug-membrane physical interactions and spatial dimensionality. Cell Biochem Biophys. 2011;61:103–13.

    Article  PubMed  CAS  Google Scholar 

  11. Rauch C. On the relationship between drug’s size, cell membrane mechanical properties and high levels of multi drug resistance: a comparison to published data. Eur Biophys J. 2009;38:537–46.

    Article  PubMed  CAS  Google Scholar 

  12. Ferte J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur J Biochem. 2000;267:277–94.

    Article  PubMed  CAS  Google Scholar 

  13. Chapman D. Phase transistions and fluidity characteristics of lipids and cell membranes. Q Rev Biophys. 1975;8:185–235.

    Article  PubMed  CAS  Google Scholar 

  14. Bretscher MS. Membrane structure: some general principles. Science. 1973;181:622–9.

    Article  PubMed  CAS  Google Scholar 

  15. Farge E, Ojcius DM, Subtil A, Dautry-Varsat A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol. 1999;276:C725–33.

    PubMed  CAS  Google Scholar 

  16. Rauch C, Farge E. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys J. 2000;78:3036–47.

    Article  PubMed  CAS  Google Scholar 

  17. Edidin M. Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol. 2003;4:414–8.

    Article  PubMed  CAS  Google Scholar 

  18. Rauch C, Pluen A. Multi drug resistance-dependent “vacuum cleaner” functionality potentially driven by the interactions between endocytosis, drug size and Pgp-like transporters surface density. Eur Biophys J. 2007;36:121–31.

    Article  PubMed  CAS  Google Scholar 

  19. Altan N, Chen Y, Schindler M, Simon SM. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med. 1998;187:1583–98.

    Article  PubMed  CAS  Google Scholar 

  20. Rauch C. Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. Eur Biophys J. 2009;38:829–46.

    Article  PubMed  CAS  Google Scholar 

  21. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA. 1987;84:7735–8.

    Article  PubMed  CAS  Google Scholar 

  22. Beaulieu E, Demeule M, Ghitescu L, Beliveau R. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J. 1997;326:539–44.

    PubMed  CAS  Google Scholar 

  23. Arceci RJ, Croop JM, Horwitz SB, Housman D. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci USA. 1988;85:4350–4.

    Article  PubMed  CAS  Google Scholar 

  24. Higgins CF, Gottesman MM. Is the multidrug transporter a flippase? Trends Biochem Sci. 1992;17:18–21.

    Article  PubMed  CAS  Google Scholar 

  25. Homolya L, Hollo Z, Germann UA, Pastan I, Gottesman MM, Sarkadi B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem. 1993;268:21493–6.

    PubMed  CAS  Google Scholar 

  26. Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol. 1995;7:532–40.

    Article  PubMed  CAS  Google Scholar 

  27. Ferreira MJ, Gyemant N, Madureira AM, Tanaka M, Koos K, Didziapetris R, Molnar J. The effects of jatrophane derivatives on the reversion of MDR1- and MRP-mediated multidrug resistance in the MDA-MB-231 (HTB-26) cell line. Anticancer Res. 2005;25:4173–8.

    PubMed  CAS  Google Scholar 

  28. Xu HB, Li L, Liu GQ. Reversal of p-glycoprotein-mediated multidrug resistance by guggulsterone in doxorubicin-resistance human myelogenous leukemia (K562/DOX) cells. Pharmazie. 2009;64:660–5.

    PubMed  CAS  Google Scholar 

  29. Ji BS, He L, Liu GQ. Reversal of P-glycoprotein-mediated multidrug resistance by CJX1, an amlodipine derivative, in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Life Sci. 2005;77:2221–32.

    Article  PubMed  CAS  Google Scholar 

  30. Panagiotopoulou V, Richardson G, Jensen OE, Rauch C. ON a biophysical and mathematical model of Pgp-mediated multidrug resistance: understanding the “space-time” dimension of MDR. Eur Biophys J. 2010;39:201–11.

    Article  PubMed  Google Scholar 

  31. Boron WF. Regulation of intracellular pH. Adv Physiol Educ. 2004;28:160–79.

    Article  PubMed  Google Scholar 

  32. Warburg O, Posener K, Negelein E. On the metabolism of tumours. London: Constable; 1930.

    Google Scholar 

  33. Reshkin SJ, Bellizzi A, Caldeira S. Albarani V, Malanchi I, Poignee M, Alunni-Fabbroni M, Casavola V, Tommasino M. Na +/H + exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent tranformation-associated phenotypes. FASEB J. 2000;14:2185–2197.

    Google Scholar 

  34. Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11:50–61.

    Article  PubMed  CAS  Google Scholar 

  35. Reshkin SJ, Cardone RA, Harguindey S. Na+ -H+ exchanger, pH regulation and cancer. Recent Pat Anticancer Drug Discov. 2013;8:85–99.

    PubMed  CAS  Google Scholar 

  36. Swietach P, Vaughan-Jones RD, Harris AL. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 2007;26:299–310.

    Article  PubMed  CAS  Google Scholar 

  37. Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F. Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr. 2012;44:127–39.

    Article  PubMed  CAS  Google Scholar 

  38. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, Jay D, Martinez-Zaguilan R, Forgac M. Functions of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem. 2009;284:16400–8.

    Article  PubMed  CAS  Google Scholar 

  39. Harvey WR. Physiology of V-ATPase. J Exp Biol. 1992;172:1–17.

    PubMed  CAS  Google Scholar 

  40. Boyer MJ, Tannock IF. Regulation of intracellular pH in tumor cell lines: influence of microenvironmental conditions. Cancer Res. 1992;52:4441–7.

    PubMed  CAS  Google Scholar 

  41. Harguindey S, Orive G, Luis Pedraz J, Paradiso A, Reshkin SJ. The role of pH dynamics and the Na +/H + antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin–one single nature. Biochim Biophys Acta. 2005;1756:1–24.

    PubMed  CAS  Google Scholar 

  42. Andreeff M, Goodrich D, Pardee AB, editors. Holland-Frei cancer medicine: cell proliferation, differentiation, and apoptosis. 5th ed. Hamilton: BC Decker Inc; 2000.

    Google Scholar 

  43. Tennant DA, Duran RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009;30:1269–80.

    Article  PubMed  CAS  Google Scholar 

  44. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. A mitochondra-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51.

    Article  PubMed  CAS  Google Scholar 

  45. Boedtkjer E, Bunch L, Pedersen SF. Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences, and implications for cancer therapy. Curr Pharm Des. 2012;18:1345–71.

    Article  PubMed  CAS  Google Scholar 

  46. Slepkov E, Fliegel L. Structure and function of the NHE1 isoform of the Na+/H+ exchanger. Biochem Cell Biol. 2002;80:499–508.

    Article  PubMed  CAS  Google Scholar 

  47. Doppler W, Jaggi R, Groner B. Induction of v-mos and activated Ha-ras oncogene expression in quiescent NIH 3T3 cells causes intracellular alkalinisation and cell-cycle progression. Gene. 1987;54:147–53.

    Article  PubMed  CAS  Google Scholar 

  48. Hagag N, Lacal JC, Graber M, Aaronson S, Viola MV. Microinjection of ras p21 induces a rapid rise in intracellular pH. Mol Cell Biol. 1987;7:1984–8.

    PubMed  CAS  Google Scholar 

  49. Chiang Y, Chou CY, Hsu KF, Huang YF, Shen MR. EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness. J Cell Physiol. 2008;214:810–9.

    Article  PubMed  CAS  Google Scholar 

  50. Brisson L, Gillet L, Calaghan S, Besson P, Le Guennec JY, Roger S, Gore J. Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H(+) efflux in caveolae. Oncogene. 2011;30:2070–2076.

    Google Scholar 

  51. Gillet L, Roger S, Besson P, Lecaille F, Gore J, Bougnoux P, Lalmanach G, LE Guennec JY. Voltage-gated sodium channel activity promotes cysteine cathespin-dependent invasiveness and colony growth of human cancer cells. J Biol Chem. 2009;284:8680–91.

    Article  PubMed  CAS  Google Scholar 

  52. Arias-Pulido H, Royce M, Gong Y, Joste N, Lomo L, Lee SJ, Chaher N, Verschraegen C, Lara J, Prossnitz ER, Cristofanilli M. GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer. Breast Cancer Res Treat. 2010;123:51–8.

    Article  PubMed  CAS  Google Scholar 

  53. Heerdt AS, Borgen PI. Current status of tamoxifen use: an update for the surgical oncologist. J Surg Oncol. 1999;72:42–9.

    Article  PubMed  CAS  Google Scholar 

  54. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006;66:5216–23.

    Article  PubMed  CAS  Google Scholar 

  55. Kraus M, Wolf B. Implications of acidic tumor microenvironment for neoplastic growth and cancer treatment: a computer analysis. Tumour Biol. 1996;17:133–54.

    Article  PubMed  CAS  Google Scholar 

  56. Martin NK, Gaffney EA, Gatenby RA, Maini PK. Tumour-stromal interactions in acid-mediated invasion: a mathematical model. J Theor Biol. 2010;267:461–70.

    Article  PubMed  Google Scholar 

  57. Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol. 2011;21:228–37.

    Article  PubMed  CAS  Google Scholar 

  58. Swietach P, Hulikova A, Patiar S, Vaughan-Jones RD, Harris AL. Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PLoS ONE. 2012;7:e35949.

    Article  PubMed  CAS  Google Scholar 

  59. Gerweck LE, Kozin SV, Stocks SJ. The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH adapted cells. Br J Cancer. 1999;79:838–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Rauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daniel, C., Rauch, C. (2013). Multidrug Resistance: A Role for Membrane Physics, pH and Drug Transporters. In: Bonavida, B. (eds) Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7070-0_2

Download citation

Publish with us

Policies and ethics