Skip to main content

Human Cancer Resistance to Trail-Apoptotic Pathway-Targeted Therapies

  • Chapter
  • First Online:
Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 1))

  • 1807 Accesses

Abstract

Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) mediates innate and adaptive immunity against the tumorigenesis and tumor progression. TRAIL binds its two death receptors, DR4 and DR5, which activate intracellular pathway of apoptosis for self destruction of tumor cells. To target this apoptotic pathway, recombinant human TRAIL and monoclonal antibodies to DR4 and DR5 have been generated as TRAIL agonists for clinical cancer therapies. A number of TRAIL agonists have passed drug safety evaluation in phase I trials; however, the data from phase II trials thus far are disappointing: TRAIL agonists either in monotherapy or combination have failed to show clinical antitumor activity. In this chapter, we will provide a historic review of the advances and the challenges in the development of TRAIL agonists for clinical treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apaf1:

Apoptotic protease activating factor 1

Bid:

Bcl-2 inhibitory BH3-domain-containing protein

tBid:

truncated Bid

cFLIP:

cellular FADD-like interleukin-1β-converting enzyme-like inhibitory protein

CYLD:

cylindromatosis

CUL3:

Cullin 3

CDDO:

Cyano-3,12-dioxooleana-1,9-dien-28-oic acid

CDDO-Me:

CDDO-methyl ester

CDDO-IM:

CDDO-imidazolide

CCNU:

1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea

DcR:

Decoy receptor

DED:

death effector domain

DD:

death domain

DISC:

death-inducing signaling complex

DR:

death receptor

DIABLO:

direct inhibitor of apoptosis binding protein with low pI

DFF45:

DNA fragmentation factor 45

DUB:

deubiquitinating

ERK 1/2:

extracellular signal-regulated kinase 1/2

FADD:

Fas-associated death domain

FasL:

Fas ligand

FLICE:

FADD-like interleukin-1β-converting enzyme

GPI:

glycosyl phosphatidylinositol

IAP:

inhibitors of apoptosis proteins

cIAP:

cellular inhibitors of apoptosis proteins

IKKγ:

inhibitor of κB (IκB) kinase γ

mAb:

monoclonal antibody

mTOR:

mammalian target of rapamycin

NHL:

non-Hodgkin lymphoma

NSCLC:

non-small cell lung carcinoma

NF-κB:

nuclear factor-κB

OTU:

N-terminal ovarian tumor domain

PEA-15:

phosphopritein enriched in astrocytes-Mr 15,000

PED:

phosphoprotein enriched in diabetes

PLAC:

preligand assembly complex

PI3K:

phosphatidylinositide-3-kinase

rhTRAIL:

recombinant human TRAIL

RIP:

receptor interacting protein

Smac:

second mitochondria-derived activator of caspase

TNF:

tumor necrosis factor

TNFSF:

TNF ligand superfamily member

TNFR:

TNF receptor

TRAIL:

tumor necrosis factor-related apoptosis inducing ligand

TRAILR:

TRAIL receptor

TRADD:

TNFR1-associated death domain

TRAF2:

TNFR-associated factor 2

TNFAIP3:

TNFα-induced protein 3

TNFSF15:

TNF ligand superfamily member 15

UB:

ubiquitin

XIAP:

X-linked inhibitor of apoptosis

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  PubMed  CAS  Google Scholar 

  2. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  PubMed  CAS  Google Scholar 

  3. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8:121–32.

    Article  PubMed  CAS  Google Scholar 

  4. Reed JC. Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol. 2006;3:388–98.

    Article  PubMed  CAS  Google Scholar 

  5. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  6. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  7. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2:420–30.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrin G, Linares CI, Muntane J. Mitochondrial drug targets in cell death and cancer. Curr Pharm Des. 2011;17:2002–16.

    Article  PubMed  CAS  Google Scholar 

  9. Storey S. Targeting apoptosis: selected anticancer strategies. Nat Rev Drug Discov. 2008;7:971–2.

    Article  PubMed  CAS  Google Scholar 

  10. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8:782–98.

    Article  PubMed  CAS  Google Scholar 

  11. Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C. TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials. 2009;4:34–41.

    Article  PubMed  CAS  Google Scholar 

  12. Fox NL, Humphreys R, Luster TA, Klein J, Gallant G. Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) Receptor-1 and Receptor-2 agonists for cancer therapy. Expert Opin Biol Ther. 2010;10:1–18.

    Article  PubMed  CAS  Google Scholar 

  13. Bellail AC, Hao C. The roadmap of TRAIL apoptotic pathway-targeted cancer therapies: what is next? Expert Rev Anticancer Ther. 2012;12:547–9.

    Article  PubMed  CAS  Google Scholar 

  14. Carswell EA, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–70.

    Article  PubMed  CAS  Google Scholar 

  15. Sun M, Fink PJ. A new class of reverse signaling costimulators belongs to the TNF family. J Immunol. 2007;179:4307–12.

    PubMed  CAS  Google Scholar 

  16. Smyth MJ, et al. Nature’s TRAIL–on a path to cancer immunotherapy. Immunity. 2003;18:1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.

    Article  PubMed  CAS  Google Scholar 

  18. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118:265–7.

    Article  PubMed  CAS  Google Scholar 

  19. Pennica D, et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312:724–9.

    Article  PubMed  CAS  Google Scholar 

  20. Beutler B, et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature. 1985;316:552–4.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis M, et al. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci U S A. 1991;88:2830–4.

    Article  PubMed  CAS  Google Scholar 

  22. Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75:1169–78.

    Article  PubMed  CAS  Google Scholar 

  23. Itoh N, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991;66:233–43.

    Article  PubMed  CAS  Google Scholar 

  24. Migone TS, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16:479–92.

    Article  PubMed  CAS  Google Scholar 

  25. Meylan F, et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29:79–89.

    Article  PubMed  CAS  Google Scholar 

  26. Wang EC. On death receptor 3 and its ligands. Immunology. 2012;137:114–6.

    Article  PubMed  CAS  Google Scholar 

  27. Chinnaiyan AM, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 1996;274:990–2.

    Article  PubMed  CAS  Google Scholar 

  28. Marsters SA, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol. 1996;6:1669–76.

    Article  PubMed  CAS  Google Scholar 

  29. Bodmer JL, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity. 1997;6:79–88.

    Article  PubMed  CAS  Google Scholar 

  30. Screaton GR, et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci U S A. 1997;94:4615–9.

    Article  PubMed  CAS  Google Scholar 

  31. Tan KB, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204:35–46.

    Article  PubMed  CAS  Google Scholar 

  32. Wiley SR, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–82.

    Article  PubMed  CAS  Google Scholar 

  33. Pitti RM, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–90.

    Article  PubMed  CAS  Google Scholar 

  34. Pan G, et al. The receptor for the cytotoxic ligand TRAIL. Science. 1997;276:111–3.

    Article  PubMed  CAS  Google Scholar 

  35. Schneider P, et al. Characterization of two receptors for TRAIL. FEBS Lett. 1997;416:329–34.

    Article  PubMed  CAS  Google Scholar 

  36. Walczak H, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997;16:5386–97.

    Article  PubMed  CAS  Google Scholar 

  37. Wu GS, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet. 1997;17:141–3.

    Article  PubMed  CAS  Google Scholar 

  38. Chaudhary PM, et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity. 1997;7:821–30.

    Article  PubMed  CAS  Google Scholar 

  39. Tracey KJ, et al. Shock and tissue injury induced by recombinant human cachectin. Science. 1986;234:470–4.

    Article  PubMed  CAS  Google Scholar 

  40. Creagan ET, Kovach JS, Moertel CG, Frytak S, Kvols LK. A phase I clinical trial of recombinant human tumor necrosis factor. Cancer. 1988;62:2467–71.

    Article  PubMed  CAS  Google Scholar 

  41. Creaven PJ, et al. A phase I clinical trial of recombinant human tumor necrosis factor given daily for five days. Cancer Chemother Pharmacol. 1989;23:186–91.

    PubMed  CAS  Google Scholar 

  42. Lenk H, Tanneberger S, Muller U, Ebert J, Shiga T. Phase II clinical trial of high-dose recombinant human tumor necrosis factor. Cancer Chemother Pharmacol. 1989;24:391–2.

    Article  PubMed  CAS  Google Scholar 

  43. Schiller JH, et al. Biological and clinical effects of intravenous tumor necrosis factor-alpha administered three times weekly. Cancer Res. 1991;51:1651–8.

    PubMed  CAS  Google Scholar 

  44. Skillings J, et al. A phase II study of recombinant tumor necrosis factor in renal cell carcinoma: a study of the National Cancer Institute of Canada Clinical Trials Group. J Immunother. (1991); 11:67–70 (1992).

    Google Scholar 

  45. Trauth BC, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989;245:301–5.

    Article  PubMed  CAS  Google Scholar 

  46. Ogasawara J, et al. Lethal effect of the anti-Fas antibody in mice. Nature. 1993;364:806–9.

    Article  PubMed  CAS  Google Scholar 

  47. Grunhagen DJ, de Wilt JH, ten Hagen TL, Eggermont AM. Technology insight: Utility of TNF-alpha-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat Clin Pract Oncol. 2006;3:94–103.

    Article  PubMed  CAS  Google Scholar 

  48. ElOjeimy S, et al. FasL gene therapy: a new therapeutic modality for head and neck cancer. Cancer Gene Ther. 2006;13:739–45.

    Article  PubMed  CAS  Google Scholar 

  49. Walczak H, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5:157–63.

    Article  PubMed  CAS  Google Scholar 

  50. Ashkenazi A, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 1999;104:155–62.

    Article  PubMed  CAS  Google Scholar 

  51. Jo M, et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med. 2000;6:564–7.

    Article  PubMed  CAS  Google Scholar 

  52. Nitsch R, et al. Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet. 2000;356:827–8.

    Article  PubMed  CAS  Google Scholar 

  53. Nagata S. Steering anti-cancer drugs away from the TRAIL. Nat Med. 2000;6:502–3.

    Article  PubMed  CAS  Google Scholar 

  54. Hao C, et al. Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res. 2001;61:1162–70.

    PubMed  CAS  Google Scholar 

  55. Ichikawa K, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med. 2001;7:954–60.

    Article  PubMed  CAS  Google Scholar 

  56. Hao C, et al. TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res. 2004;64:8502–6.

    Article  PubMed  CAS  Google Scholar 

  57. Lawrence D, et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med. 2001;7:383–5.

    Article  PubMed  CAS  Google Scholar 

  58. Song JH, Bellail A, Tse MC, Yong VW, Hao C. Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J Neurosci. 2006;26:3299–308.

    Article  PubMed  CAS  Google Scholar 

  59. Takeda K, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med. 2001;7:94–100.

    Article  PubMed  CAS  Google Scholar 

  60. Takeda K, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med. 2002;195:161–9.

    Article  PubMed  CAS  Google Scholar 

  61. Cretney E, et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol. 2002;168:1356–61.

    PubMed  CAS  Google Scholar 

  62. Schmaltz C, et al. T cells require TRAIL for optimal graft-versus-tumor activity. Nat Med. 2002;8:1433–7.

    Article  PubMed  CAS  Google Scholar 

  63. Taieb J, et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med. 2006;12:214–9.

    Article  PubMed  CAS  Google Scholar 

  64. Cha SS, et al. 2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity. 1999;11:253–61.

    Article  PubMed  CAS  Google Scholar 

  65. Mariani SM, Krammer PH. Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol. 1998;28:973–82.

    Article  PubMed  CAS  Google Scholar 

  66. Clancy L, et al. Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A. 2005;102:18099–104.

    Article  PubMed  CAS  Google Scholar 

  67. Schneider P, et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity. 1997;7:831–6.

    Article  PubMed  CAS  Google Scholar 

  68. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81:505–12.

    Article  PubMed  CAS  Google Scholar 

  69. Bodmer JL, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol. 2000;2:241–3.

    Article  PubMed  CAS  Google Scholar 

  70. Kischkel FC, et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity. 2000;12:611–20.

    Article  PubMed  CAS  Google Scholar 

  71. Xiao C, Yang BF, Asadi N, Beguinot F, Hao C. Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem. 2002;277:25020–5.

    Article  PubMed  CAS  Google Scholar 

  72. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci U S A. 2001;98:13884–8.

    Article  PubMed  CAS  Google Scholar 

  73. Kischkel FC, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276:46639–46.

    Article  PubMed  CAS  Google Scholar 

  74. Sprick MR, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 2002;21:4520–30.

    Article  PubMed  CAS  Google Scholar 

  75. Kischkel FC, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14:5579–88.

    PubMed  CAS  Google Scholar 

  76. Muzio M, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell. 1996;85:817–27.

    Article  PubMed  CAS  Google Scholar 

  77. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell. 1996;85:803–15.

    Article  PubMed  CAS  Google Scholar 

  78. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491–501.

    Article  PubMed  CAS  Google Scholar 

  79. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481–90.

    Article  PubMed  CAS  Google Scholar 

  80. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  81. Verhagen AM, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102:43–53.

    Article  PubMed  CAS  Google Scholar 

  82. Li P, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.

    Article  PubMed  CAS  Google Scholar 

  83. Wagenknecht B, et al. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. 1999;6:370–6.

    Article  PubMed  CAS  Google Scholar 

  84. Deng Y, Lin Y, Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 2002;16:33–45.

    Article  PubMed  CAS  Google Scholar 

  85. Scaffidi C, Medema JP, Krammer PH, Peter ME. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem. 1997;272:26953–8.

    Article  PubMed  CAS  Google Scholar 

  86. Walker NP, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell. 1994;78:343–52.

    Article  PubMed  CAS  Google Scholar 

  87. Wilson KP, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994;370:270–5.

    Article  PubMed  CAS  Google Scholar 

  88. Medema JP, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 1997;16:2794–804.

    Article  PubMed  CAS  Google Scholar 

  89. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell. 1998;1:319–25.

    Article  PubMed  CAS  Google Scholar 

  90. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175–84.

    Article  PubMed  CAS  Google Scholar 

  91. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem. 1998;273:2926–30.

    Article  PubMed  CAS  Google Scholar 

  92. Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A. 1999;96:10964–7.

    Article  PubMed  CAS  Google Scholar 

  93. Boatright KM, et al. A unified model for apical caspase activation. Mol Cell. 2003;11:529–41.

    Article  PubMed  CAS  Google Scholar 

  94. Donepudi M, Mac Sweeney A, Briand C, Grutter MG. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell. 2003;11:543–9.

    Article  PubMed  CAS  Google Scholar 

  95. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X. Interdimer processing mechanism of procaspase-8 activation. EMBO J. 2003;22:4132–42.

    Article  PubMed  CAS  Google Scholar 

  96. Roth W, et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun. 1999;265:479–83.

    Article  PubMed  CAS  Google Scholar 

  97. Spierings DC, et al. Expression of TRAIL and TRAIL death receptors in stage III non-small cell lung cancer tumors. Clin Cancer Res. 2003;9:3397–405.

    PubMed  CAS  Google Scholar 

  98. Song JH, Song DK, Herlyn M, Petruk KC, Hao C. Cisplatin down-regulation of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitory proteins to restore tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human melanoma cells. Clin Cancer Res. 2003;9:4255–66.

    PubMed  CAS  Google Scholar 

  99. Song JH, et al. TRAIL triggers apoptosis in malignant glioma cells through extrinsic and intrinsic pathways. Brain Pathol. 2003;13:539–53.

    Article  PubMed  CAS  Google Scholar 

  100. Younes M, Georgakis GV, Rahmani M, Beer D, Younes A. Functional expression of TRAIL receptors TRAIL-R1 and TRAIL-R2 in esophageal adenocarcinoma. Eur J Cancer. 2006;42:542–7.

    Article  PubMed  CAS  Google Scholar 

  101. Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2 l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin Cancer Res. 2001;7:1362–9.

    PubMed  CAS  Google Scholar 

  102. Knight MJ, Riffkin CD, Muscat AM, Ashley DM, Hawkins CJ. Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene. 2001;20:5789–98.

    Article  PubMed  CAS  Google Scholar 

  103. Pukac L, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer. 2005;92:1430–41.

    Article  PubMed  CAS  Google Scholar 

  104. Song JH, et al. Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res. 2007;67:6946–55.

    Article  PubMed  CAS  Google Scholar 

  105. Saito R, et al. Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res. 2004;64:6858–62.

    Article  PubMed  CAS  Google Scholar 

  106. Ehtesham M, et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 2002;62:7170–4.

    PubMed  CAS  Google Scholar 

  107. Griffith TS, Broghammer EL. Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther. 2001;4:257–66.

    Article  PubMed  CAS  Google Scholar 

  108. Wohlfahrt ME, Beard BC, Lieber A, Kiem HP. A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res. 2007;67:8783–90.

    Article  PubMed  CAS  Google Scholar 

  109. Jin H, et al. Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res. 2004;64:4900–5.

    Article  PubMed  CAS  Google Scholar 

  110. Rampino N, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275:967–9.

    Article  PubMed  CAS  Google Scholar 

  111. LeBlanc H, et al. Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med. 2002;8:274–81.

    Article  PubMed  CAS  Google Scholar 

  112. Lee SH, et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res. 1999;59:5683–6.

    PubMed  CAS  Google Scholar 

  113. Fisher MJ, et al. Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin Cancer Res. 2001;7:1688–97.

    PubMed  CAS  Google Scholar 

  114. Park WS, et al. Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology. 2001;121:1219–25.

    Article  PubMed  CAS  Google Scholar 

  115. Shin MS, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res. 2001;61:4942–6.

    PubMed  CAS  Google Scholar 

  116. Lee SH, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene. 2001;20:399–403.

    Article  PubMed  CAS  Google Scholar 

  117. McDonald ER 3rd, Chui PC, Martelli PF, Dicker DT, El-Deiry WS. Death domain mutagenesis of KILLER/DR5 reveals residues critical for apoptotic signaling. J Biol Chem. 2001;276:14939–45.

    Article  PubMed  CAS  Google Scholar 

  118. Bin L, et al. Tumor-derived mutations in the TRAIL receptor DR5 inhibit TRAIL signaling through the DR4 receptor by competing for ligand binding. J Biol Chem. 2007;282:28189–94.

    Article  PubMed  CAS  Google Scholar 

  119. Li YC, et al. Genomic alterations in human malignant glioma cells associate with the cell resistance to the combination treatment with tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy. Clin Cancer Res. 2006;12:2716–29.

    Article  PubMed  CAS  Google Scholar 

  120. Hopkins-Donaldson S, et al. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. 2000;60:4315–9.

    PubMed  CAS  Google Scholar 

  121. Eggert A, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res. 2001;61:1314–9.

    PubMed  CAS  Google Scholar 

  122. Kim HS, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology. 2003;125:708–15.

    Article  PubMed  CAS  Google Scholar 

  123. Soung YH, et al. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res. 2005;65:815–21.

    PubMed  CAS  Google Scholar 

  124. Degli-Esposti MA, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med. 1997;186:1165–70.

    Article  PubMed  CAS  Google Scholar 

  125. Sheridan JP, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997;277:818–21.

    Article  PubMed  CAS  Google Scholar 

  126. Mongkolsapaya J, et al. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol. 1998;160:3–6.

    PubMed  CAS  Google Scholar 

  127. Marsters SA, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol. 1997;7:1003–6.

    Article  PubMed  CAS  Google Scholar 

  128. Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett. 1998;424:41–5.

    Article  PubMed  CAS  Google Scholar 

  129. Degli-Esposti MA, et al. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity. 1997;7:813–20.

    Article  PubMed  CAS  Google Scholar 

  130. Sheikh MS, et al. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene. 1999;18:4153–9.

    Article  PubMed  CAS  Google Scholar 

  131. Liu X, Yue P, Khuri FR, Sun SY. Decoy receptor 2 (DcR2) is a p53 target gene and regulates chemosensitivity. Cancer Res. 2005;65:9169–75.

    Article  PubMed  CAS  Google Scholar 

  132. Merino D, et al. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol. 2006;26:7046–55.

    Article  PubMed  CAS  Google Scholar 

  133. Bellail AC, et al. DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas. J Cell Mol Med. 2010;14:1303–1317.

    Google Scholar 

  134. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995;81:513–23.

    Article  PubMed  CAS  Google Scholar 

  135. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996;4:387–96.

    Article  PubMed  CAS  Google Scholar 

  136. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996;84:299–308.

    Article  PubMed  CAS  Google Scholar 

  137. Lin Y, et al. The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biol. 2000;20:6638–45.

    Article  PubMed  CAS  Google Scholar 

  138. Harper N, Farrow SN, Kaptein A, Cohen GM, MacFarlane M. Modulation of tumor necrosis factor apoptosis-inducing ligand- induced NF-kappa B activation by inhibition of apical caspases. J Biol Chem. 2001;276:34743–52.

    Article  PubMed  CAS  Google Scholar 

  139. Varfolomeev E, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem. 2005;280:40599–608.

    Article  PubMed  CAS  Google Scholar 

  140. Irmler M, et al. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–5.

    Article  PubMed  CAS  Google Scholar 

  141. Condorelli G, et al. PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus. EMBO J. 1998;17:3858–66.

    Article  PubMed  CAS  Google Scholar 

  142. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem. 1999;274:1541–8.

    Article  PubMed  CAS  Google Scholar 

  143. Condorelli G, et al. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene. 1999;18:4409–15.

    Article  PubMed  CAS  Google Scholar 

  144. Yang BF, Xiao C, Roa WH, Krammer PH, Hao C. Calcium/Calmodulin-dependent protein kinase II regulation of c-FLIP expression and phosphorylation in modulation of fas-mediated signaling in malignant glioma cells. J Biol Chem. 2003;278:7043–50.

    Article  PubMed  CAS  Google Scholar 

  145. Kataoka T, et al. The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol. 2000;10:640–8.

    Article  PubMed  CAS  Google Scholar 

  146. Kataoka T, Tschopp J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol. 2004;24:2627–36.

    Article  PubMed  CAS  Google Scholar 

  147. Krueger J, Chou FL, Glading A, Schaefer E, Ginsberg MH. Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation. Mol Biol Cell. 2005;16:3552–61.

    Article  PubMed  CAS  Google Scholar 

  148. Jeremias I, et al. Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood. 1998;91:4624–31.

    PubMed  CAS  Google Scholar 

  149. Trauzold A, et al. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene. 2006;25(56):7434-9.

    Google Scholar 

  150. Malhi H, Gores GJ. TRAIL resistance results in cancer progression: a TRAIL to perdition? Oncogene. 2006;25:7333–5.

    Article  PubMed  CAS  Google Scholar 

  151. Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol. 2001;21:3964–73.

    Article  PubMed  CAS  Google Scholar 

  152. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol. 2001;21:5299–305.

    Article  PubMed  CAS  Google Scholar 

  153. Ricci MS, et al. Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell. 2007;12:66–80.

    Article  PubMed  CAS  Google Scholar 

  154. Baetu TM, Kwon H, Sharma S, Grandvaux N, Hiscott J. Disruption of NF-kappaB signaling reveals a novel role for NF-kappaB in the regulation of TNF-related apoptosis-inducing ligand expression. J Immunol. 2001;167:3164–73.

    PubMed  CAS  Google Scholar 

  155. Shetty S, et al. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol. 2005;25:5404–16.

    Article  PubMed  CAS  Google Scholar 

  156. Steele LP, Georgopoulos NT, Southgate J, Selby PJ, Trejdosiewicz LK. Differential susceptibility to TRAIL of normal versus malignant human urothelial cells. Cell Death Differ. 2006;13:1564–76.

    Article  PubMed  CAS  Google Scholar 

  157. Song JH, et al. Lipid rafts and non-rafts mediate TRAIL-induced apoptotic and non-apoptotic signals in non-small cell lung carcinoma cells. Cancer Res. 2007;67:1–10.

    Article  CAS  Google Scholar 

  158. Sharp DA, Lawrence DA, Ashkenazi A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem. 2005;280:19401–9.

    Article  PubMed  CAS  Google Scholar 

  159. Wang P, et al. Inhibition of RIP and c-FLIP enhances TRAIL-induced apoptosis in pancreatic cancer cells. Cell Signal. 2007;19:2237–46.

    Article  PubMed  CAS  Google Scholar 

  160. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  PubMed  CAS  Google Scholar 

  161. Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998;17:3878–85.

    Article  PubMed  CAS  Google Scholar 

  162. Wei MC, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000;14:2060–71.

    PubMed  CAS  Google Scholar 

  163. Hinz S, et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene. 2000;19:5477–86.

    Article  PubMed  CAS  Google Scholar 

  164. Munshi A, et al. TRAIL (APO-2L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. Oncogene. 2001;20:3757–65.

    Article  PubMed  CAS  Google Scholar 

  165. Fulda S, Meyer E, Debatin KM. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene. 2002;21:2283–94.

    Article  PubMed  CAS  Google Scholar 

  166. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002;3:401–10.

    Article  PubMed  CAS  Google Scholar 

  167. Bockbrader KM, Tan M, Sun Y. A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene. 2005;24:7381–8.

    Article  PubMed  CAS  Google Scholar 

  168. Mizutani Y, et al. Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int J Oncol. 2007;30:919–25.

    PubMed  CAS  Google Scholar 

  169. Karikari CA, et al. Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein. Mol Cancer Ther. 2007;6:957–66.

    Article  PubMed  CAS  Google Scholar 

  170. Chawla-Sarkar M, et al. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 2004;11:915–23.

    Article  PubMed  CAS  Google Scholar 

  171. Cummins JM, et al. X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res. 2004;64:3006–8.

    Article  PubMed  CAS  Google Scholar 

  172. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. 2002;8:808–15.

    PubMed  CAS  Google Scholar 

  173. Li L, et al. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science. 2004;305:1471–4.

    Article  PubMed  CAS  Google Scholar 

  174. Naumann U, et al. Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Ther. 2007;14:147–61.

    PubMed  CAS  Google Scholar 

  175. Hughes MA, et al. Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell. 2009;35:265–79.

    Article  PubMed  CAS  Google Scholar 

  176. Oberst A, et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem. 2010;285:16632–42.

    Article  PubMed  CAS  Google Scholar 

  177. Skaug B, Jiang X, Chen ZJ. The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem. 2009;78:769–96.

    Article  PubMed  CAS  Google Scholar 

  178. Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature. 2009;458:430–7.

    Article  PubMed  CAS  Google Scholar 

  179. Ikeda F, Crosetto N, Dikic I. What determines the specificity and outcomes of ubiquitin signaling? Cell. 2010;143:677–81.

    Article  PubMed  CAS  Google Scholar 

  180. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.

    Article  PubMed  CAS  Google Scholar 

  181. Rahighi S, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell. 2009;136:1098–109.

    Article  PubMed  CAS  Google Scholar 

  182. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  PubMed  CAS  Google Scholar 

  183. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.

    Article  PubMed  CAS  Google Scholar 

  184. Jin Z, et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell. 2009;137:721–35.

    Article  PubMed  CAS  Google Scholar 

  185. Lee EG, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289:2350–4.

    Article  PubMed  CAS  Google Scholar 

  186. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010;327:1135–9.

    Article  PubMed  CAS  Google Scholar 

  187. Boone DL, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol. 2004;5:1052–60.

    Article  PubMed  CAS  Google Scholar 

  188. Hitotsumatsu O, et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity. 2008;28:381–90.

    Article  PubMed  CAS  Google Scholar 

  189. Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:694–9.

    Article  PubMed  CAS  Google Scholar 

  190. Bellail AC, Olson JJ, Yang X, Chen ZJ, Hao C. A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cancer Discov. 2012;2:140–55.

    Article  PubMed  CAS  Google Scholar 

  191. Hao C, Song JH, Vilimanovich U, Kneteman NM. Modulation of TRAIL signaling complex. Vitam Horm. 2004;67:81–99.

    Article  PubMed  CAS  Google Scholar 

  192. Honda T, et al. Synthetic oleanane and ursane triterpenoids with modified rings A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J Med Chem. 2000;43:4233–46.

    Article  PubMed  CAS  Google Scholar 

  193. Zou W, et al. c-Jun NH2-terminal kinase-mediated up-regulation of death receptor 5 contributes to induction of apoptosis by the novel synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1, 9-dien-28-oate in human lung cancer cells. Cancer Res. 2004;64:7570–8.

    Article  PubMed  CAS  Google Scholar 

  194. Hyer ML, et al. Synthetic triterpenoids cooperate with tumor necrosis factor-related apoptosis-inducing ligand to induce apoptosis of breast cancer cells. Cancer Res. 2005;65:4799–808.

    Article  PubMed  CAS  Google Scholar 

  195. Speranza G, et al. Phase I study of the synthetic triterpenoid, 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO), in advanced solid tumors. Cancer Chemother Pharmacol. 2012;69:431–8.

    Article  PubMed  CAS  Google Scholar 

  196. Jansen B, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet. 2000;356:1728–33.

    Article  PubMed  CAS  Google Scholar 

  197. Dean E, et al. Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol. 2009;27:1660–6.

    Article  PubMed  CAS  Google Scholar 

  198. Tanioka M, et al. Phase I study of LY2181308, an antisense oligonucleotide against survivin, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;68:505–11.

    Article  PubMed  CAS  Google Scholar 

  199. Chauhan D, et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007;109:1220–7.

    Article  PubMed  CAS  Google Scholar 

  200. Lu J, et al. Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. Mol Cancer Ther. 2011;10:902–14.

    Article  PubMed  CAS  Google Scholar 

  201. Ishii N, et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 1999;9:469–79.

    Article  PubMed  CAS  Google Scholar 

  202. Weinmann L, et al. A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 2008;15:718–29.

    Article  PubMed  CAS  Google Scholar 

  203. Panner A, James CD, Berger MS, Pieper RO. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol. 2005;25:8809–23.

    Article  PubMed  CAS  Google Scholar 

  204. Eramo A, et al. Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction. Cancer Res. 2005;65:11469–77.

    Article  PubMed  CAS  Google Scholar 

  205. Panner A, Murray JC, Berger MS, Pieper RO. Heat shock protein 90alpha recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res. 2007;67:9482–9.

    Article  PubMed  CAS  Google Scholar 

  206. Corsten MF, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007;67:8994–9000.

    Article  PubMed  CAS  Google Scholar 

  207. Koschny R, et al. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res. 2007;13:3403–12.

    Article  PubMed  CAS  Google Scholar 

  208. Mitsiades CS, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood. 2001;98:795–804.

    Article  PubMed  CAS  Google Scholar 

  209. Kandasamy K, Kraft AS. Proteasome inhibitor PS-341 (VELCADE) induces stabilization of the TRAIL receptor DR5 mRNA through the 3′-untranslated region. Mol Cancer Ther. 2008;7:1091–100.

    Article  PubMed  CAS  Google Scholar 

  210. Gibson EM, Henson ES, Haney N, Villanueva J, Gibson SB. Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release. Cancer Res. 2002;62:488–96.

    PubMed  CAS  Google Scholar 

  211. Guo F, et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. 2004;64:2580–9.

    Article  PubMed  CAS  Google Scholar 

  212. Frew AJ, et al. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci U S A. 2008;105:11317–22.

    Article  PubMed  CAS  Google Scholar 

  213. Liu X, Yue P, Zhou Z, Khuri FR, Sun SY. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst. 2004;96:1769–80.

    Article  PubMed  CAS  Google Scholar 

  214. Martin S, et al. Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res. 2005;65:11447–58.

    Article  PubMed  CAS  Google Scholar 

  215. Poh TW, Huang S, Hirpara JL, Pervaiz S. LY303511 amplifies TRAIL-induced apoptosis in tumor cells by enhancing DR5 oligomerization, DISC assembly, and mitochondrial permeabilization. Cell Death Differ. 2007;14:1813–25.

    Article  PubMed  CAS  Google Scholar 

  216. Daniel D, et al. Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood. 2007;110:4037–46.

    Article  PubMed  CAS  Google Scholar 

  217. Maddipatla S, Hernandez-Ilizaliturri FJ, Knight J, Czuczman MS. Augmented antitumor activity against B-cell lymphoma by a combination of monoclonal antibodies targeting TRAIL-R1 and CD20. Clin Cancer Res. 2007;13:4556–64.

    Article  PubMed  CAS  Google Scholar 

  218. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.

    Article  PubMed  CAS  Google Scholar 

  219. Lacour S, et al. Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res. 2001;61:1645–51.

    PubMed  CAS  Google Scholar 

  220. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. 1999;59:734–41.

    PubMed  CAS  Google Scholar 

  221. Nagane M, et al. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 2000;60:847–53.

    PubMed  CAS  Google Scholar 

  222. Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G. Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res. 2000;60:7133–41.

    PubMed  CAS  Google Scholar 

  223. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol. 2000;20:205–12.

    Article  PubMed  CAS  Google Scholar 

  224. Nimmanapalli R, et al. Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res. 2001;61:759–63.

    PubMed  CAS  Google Scholar 

  225. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res. 2003;63:5390–400.

    PubMed  CAS  Google Scholar 

  226. Asakuma J, Sumitomo M, Asano T, Hayakawa M. Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res. 2003;63:1365–70.

    PubMed  CAS  Google Scholar 

  227. Ohtsuka T, et al. Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene. 2003;22:2034–44.

    Article  PubMed  CAS  Google Scholar 

  228. Belyanskaya LL, et al. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol Cancer. 2007;6:66.

    Article  PubMed  CAS  Google Scholar 

  229. Rohn TA, et al. CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. Oncogene. 2001;20:4128–37.

    Article  PubMed  CAS  Google Scholar 

  230. Nagane M, Cavenee WK, Shiokawa Y. Synergistic cytotoxicity through the activation of multiple apoptosis pathways in human glioma cells induced by combined treatment with ionizing radiation and tumor necrosis factor-related apoptosis-inducing ligand. J Neurosurg. 2007;106:407–16.

    Article  PubMed  Google Scholar 

  231. Tsurushima H, Yuan X, Dillehay LE, Leong KW. Radiation-inducible caspase-8 gene therapy for malignant brain tumors. Int J Radiat Oncol Biol Phys. 2008;71:517–25.

    Article  PubMed  CAS  Google Scholar 

  232. Fiveash JB, et al. Enhancement of glioma radiotherapy and chemotherapy response with targeted antibody therapy against death receptor 5. Int J Radiat Oncol Biol Phys. 2008;71:507–16.

    Article  PubMed  CAS  Google Scholar 

  233. Ashkenazi A, Holland P, Eckhardt SG. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol. 2008;26:3621–30.

    Article  PubMed  CAS  Google Scholar 

  234. Herbst RS, et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol. 2010;28:2839–46.

    Article  PubMed  CAS  Google Scholar 

  235. Soria JC, et al. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol. 2010;28:1527–33.

    Article  PubMed  CAS  Google Scholar 

  236. Soria JC, et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:4442–51.

    Article  PubMed  CAS  Google Scholar 

  237. Yada A, et al. A novel humanized anti-human death receptor 5 antibody CS-1008 induces apoptosis in tumor cells without toxicity in hepatocytes. Ann Oncol. 2008;19:1060–7.

    Article  PubMed  CAS  Google Scholar 

  238. Forero-Torres A, et al. Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm. 2010;25:13–9.

    Article  PubMed  CAS  Google Scholar 

  239. Humphreys RC, Halpern W. Trail receptors: targets for cancer therapy. Adv Exp Med Biol. 2008;615:127–58.

    Article  PubMed  CAS  Google Scholar 

  240. Tolcher AW, et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol. 2007;25:1390–5.

    Article  PubMed  CAS  Google Scholar 

  241. Hotte SJ, et al. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res. 2008;14:3450–5.

    Article  PubMed  CAS  Google Scholar 

  242. Greco FA, et al. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer. 2008;61:82–90.

    Article  PubMed  Google Scholar 

  243. Trarbach T, et al. Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer. 2010;102:506–12.

    Article  PubMed  CAS  Google Scholar 

  244. Plummer R, et al. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res. 2007;13:6187–94.

    Article  PubMed  CAS  Google Scholar 

  245. Wakelee HA, et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol. 2010;21:376–81.

    Article  PubMed  CAS  Google Scholar 

  246. Motoki K, et al. Enhanced apoptosis and tumor regression induced by a direct agonist antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2. Clin Cancer Res. 2005;11:3126–35.

    Article  PubMed  CAS  Google Scholar 

  247. Adams C, et al. Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death Differ. 2008;15:751–61.

    Article  PubMed  CAS  Google Scholar 

  248. Doi T, et al. Phase 1 study of conatumumab, a pro-apoptotic death receptor 5 agonist antibody, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;68:733–41.

    Article  PubMed  CAS  Google Scholar 

  249. Herbst RS, et al. A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res. 2010;16:5883–91.

    Article  PubMed  CAS  Google Scholar 

  250. Demetri GD, et al. First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone: a phase I/II open-label and double-blind study. Eur J Cancer. 2012;48:547–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in our laboratory has been supported in part by grants from the Alberta Heritage Foundation for Medical Research, Canadian Institutes of Health Research, National Cancer Institute of Canada, Georgia Cancer Coalition and National Institutes of Health of the United States.

Conflict of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhai Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bellail, A.C., Hao, C. (2013). Human Cancer Resistance to Trail-Apoptotic Pathway-Targeted Therapies . In: Bonavida, B. (eds) Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7070-0_11

Download citation

Publish with us

Policies and ethics